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Abstract

The state of chromatin is not only determined by the protein arrangement along the chro-
matin contour but also by its 3D organization inside the nucleus. Packaging of DNA into
chromatin requires high compaction, while reading the genetic code requires accessibility.
How cell tackles these seemingly contradictory requirements is a puzzle. Recent advances
in chromosome conformation capture experiments (3C, 4C, Hi-C etc.) provide partial in-
formation on the chromatin organization in a cell population, namely the contact count
between any segment pairs. However, these experiments do not provide the interaction
strengths that lead to these contact counts. Hence, given the contact matrix, determining
the complete 3D organization of the whole chromatin polymer is an inverse problem. In
this thesis, a novel Inverse Brownian Dynamics (IBD) method based on a coarse-grained
bead-spring chain model has been proposed to compute the optimal interaction strengths
between di↵erent segments of chromatin such that the experimentally measured contact
probability constraints are satisfied.

We model the chromatin polymer as a bead-spring chain. The crosslinking between
the beads (chromatin segments) is often represented by soft non-bonded potential such
as Lennard-Jones potentials. We argue that this is a better strategy to study biopolymers
like chromatin having crosslinks with a diverse range of interaction strengths and propen-
sity to break and reform. We study the crosslinked single polymer using a Soddemann-
Duenweg-Kremer (SDK) potential, which has a parameter that can vary the attractive
interaction strength without a↵ecting the repulsive nature, and a parameter that will intro-
duce a natural cut-o↵ in the attractive interaction strength. Through extensive Brownian
Dynamics simulations with hydrodynamic interactions, we investigate parameters that
satisfy the scaling behaviour in all solvent regimes. Simulating crosslinks as bead-pairs
bonded by the SDK potential and applying the IBD method to the ↵-globin gene locus
in two di↵erent cell types, we predict the 3D organizations corresponding to active and
repressed states of chromatin at the locus. We show that the average distance between any
two segments of the region has a broad distribution and cannot be computed as a simple
inverse relation based on the contact probability alone. The results presented for multiple
normalization methods suggest that all measurable quantities may crucially depend on the



ii

nature of normalization. We argue that by experimentally measuring predicted quantities,
one may infer the appropriate form of normalization.

Chromatin is observed to be organized into multiple domains of varying sizes and
compaction. While these domains are often imagined as static structures, they are highly
dynamic and show cell-to-cell variability. Since processes such as gene regulation and
DNA replication occur in the context of these domains, it is important to understand their
organization, fluctuation and dynamics. To quantify how epigenetic changes can alter
the spatio-temporal nature of the domains, we perturbed the interaction strengths system-
atically. Computing distance-distributions and relaxation times for di↵erent chromatin
states, we show that weak and strong interactions cooperatively determine the organiza-
tion of the domains and how the solid-like and liquid-like nature of chromatin gets altered
as we vary epigenetic states. Quantifying the dynamics of chromatin segments within
a domain, we show how the competition between polymer entropy and interaction en-
ergy influence the timescales of loop formation and maintenance of stable loops. Our
results suggest that chromatin cannot be completely described by its average properties;
the statistical distributions of configurations are crucial. Analysis of chromatin fluctu-
ations implies that, as chromatin folds, the domains get more sti↵ as well as experience
more viscous drag. Our study of chromatin dynamics finds power-law distribution of loop
formation times indicating multiple timescales.
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Chapter 1

Introduction

All living organisms are made of cells, and every cell contains a long semi-flexible
polymer known as deoxyribonucleic acid (DNA). It contains the recipe—the genetic
information—to produce the entire material necessary to make and maintain a cell. DNA
is made up of four types of nucleotide subunits (also, “bases”), namely adenine (A), cyto-
sine (C), guanine (G) and thymine (T), and exists in cells as a double-stranded molecule
having A-T and G-C paired bases as shown in Fig. 1.1. The sequence of these four
nucleotides acts like a code (the genetic code) for all cellular processes. This code is
inherited from each cell to its daughter cell as the cells divide. The total length of DNA
in a typical human cell is ⇡ two meters and is packed into a small volume (⇡ 10µm3) of
the cell nucleus [2, 41]. All the DNA in a human cell does not exist as one single long
piece of polymer; rather, they are 46 pieces of polymers, each having a length of several
centimetres, which collectively span over 2m (6 ⇥ 109 base pairs (bp)).

Even though all the cells in a multi-cellular organism have the same DNA sequence,
they function di↵erently based on the cell type. For example, the phenotype of a skin cell
is significantly di↵erent from that of a neuronal cell. In a given cell type, only certain parts
of the DNA will be read to produce proteins, while other parts will be highly folded and
inaccessible to read. In another cell type, some other parts will be accessible, and only
those genes will be read. That is, each cell type e↵ectively reads di↵erent parts of the DNA
(hence, e↵ectively, di↵erent genetic code) due to its packaging and 3D organization [75,
56, 48, 17, 97, 137]. Therefore, reading of the genes (and producing genetic material)
should be done in a regulated manner to maintain cell fate and homeostasis.

How is the regulated reading of genes achieved? On the one hand, the DNA is required
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4 Introduction

Figure 1.1: Schematic representation of the DNA with its nucleotide sequence. Distance between

consecutive nucleotides is 0.34nm. The width of the DNA is 2nm.

to fold and condense to accommodate it in the tiny space of the nucleus; on the other
hand, the reading of the genetic code for cell functionality requires regulated access to
the DNA. How cell tackles these seemingly contradictory requirements is a puzzle. DNA
achieves this challenging task of regulated packing of the genome with the help of a
number of specialised proteins present inside the cell, and it results in a higher-order
structure known as chromatin. That is, in cells, the accessibility of the genetic code is
controlled by covering it with a large number of proteins, folding it further and packaging
it into a 3-dimensional structure known as chromatin. It must be noted that every cellular
process occurs in the context of the chromatin polymer.

In the first level of packaging, the DNA molecule is wrapped around histone proteins
forming a structure reminiscent of a string of beads where each bead is known as a nucle-
osome having a width of 11nm as shown in Fig. 1.2 [70, 71]. Earlier, based on in vitro
experiments and theoretical predictions arising from minimal models, it was argued that
this string of nucleosomes does further fold in a highly regular solenoid or zig-zag manner
to form a structure having 30nm width. However, current evidence suggests that, in vivo,
chromatin may not exist in its 30nm fibre form; recent studies rather observe an irregular
structure in the length scale of a few nucleosomes. [82, 96, 7, 63, 58, 117, 5, 36, 26, 118,
95]. However, how chromatin gets further organised in the interphase and finally to form
mitotic chromosomes is still being investigated.

In early Eukaryotic organisms such as yeast, chromatin is organized into a Rabl con-
figuration with centromeres of all the chromosomes forming a cluster tethered to the nu-
clear periphery and telomeres on the opposite direction [14]. Fig. 1.3(a) and (b) pictori-
ally represent the Rabl configuration where the centromere cluster is marked in black, and
each chromosome is shown in a di↵erent colour. It appears that the chromatin organiza-
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Figure 1.2: A typical model given in biology text books showing many levels of chromatin pack-

ing giving rise to the highly condensed mitotic chromosome. This figure is reproduced from Al-

berts [2] . However, new ongoing research is questioning many of the prevalent notions of chro-

matin organisation and a new picture is emerging.

(a) side view (b) top view

Figure 1.3: Pictorial representation of Rabl configuration of yeast genome where the centromeres

are clustered together (big black bead). Di↵erent colors represent di↵erent chromosomes.
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Figure 1.4: Schematic representation of chromosome conformation capture techniques. Chro-

matin polymers inside the cell nucleus are crosslinked with chemical agents like formaldehyde.

Contacts between the chromatin segments are represented by the red circles. Crosslinked chro-

matin is then chopped o↵ using restriction enzymes and the crosslinked fragments are separated.

These fragments are then sequenced and locations are mapped back to the known genomic coordi-

nates to identify the segments in the same crosslinked fragment. The results of these experiments

can give us the information about the contact counts between all segment pairs of a chromatin.

tion in these fungal organisms is relatively simpler compared to the mammals like mouse
or humans. In mammals, the chromatin is organized into many domains of di↵erent sizes
and compaction. How these domains are formed and maintained is a matter of current
research. To give this thesis a coherent prospective, a brief history of the discovery of
chromatin is given below, followed by a summary of some of the relevant recent findings
necessary to develop this thesis.

1.1 Experimental studies to understand chromatin

Experimentally, several attempts have been made to unravel the structure of chromatin,
which can be broadly classified into two categories: biochemical methods and imaging
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methods. Earlier studies using biochemical methods and electron microscopy techniques
revealed a beads-on-a-string form of chromatin — a string of nucleosomes [71, 78] hav-
ing a width of ⇡ 10nm (also see Fig. 1.2). Later there have been intense investigations of
how nucleosomes are organized in 3D, using imaging, X-ray scattering and other experi-
mental techniques and led to the hypothesis that nucleosomes are organized in a zig-zag or
solenoidal manner [53, 70, 80, 79, 11, 139, 45]. The focus then moved to understand the
nucleosome crystal structure (using X-ray) [80], and positioning of nucleosomes along
with the DNA (using sequencing methods) [119, 68]. Based on earlier studies of sin-
gle mitotic chromosome structure, it was hypothesized that beads on string chromatin
were further folded around a contiguous sca↵old-like protein structure. However, single-
molecule experiments showed that there is no such contiguous protein sca↵old structure
in mitotic chromosomes [104]. Detailed studies from the group of Maeshima and other
groups showed that 10nm-wide chromatin is arranged in an irregular fashion with no
well-defined structure [82, 96, 91, 7]

Around the same time, an imaging method known as fluorescence in situ hybridiza-
tion (FISH) was used to visualize specific loci of each chromosome. These experiments,
at the interphase, revealed the existence of chromosome territories — the finding that each
chromosome has a preferred (relative) spatial location within the nucleus. It has been sug-
gested that active genes within a chromosome prefer to be at the interior of the cell nucleus
while the repressed genes are often found at the nuclear periphery [29, 123, 83, 61, 28].
Biochemical techniques have been successful in providing insights into our understand-
ing of the structure of each chromosome and how chromatin is organized genomewide.
One of the very useful methods that became popular in the last decade is the chromosome
conformation capture method (3C) and its derivative techniques like 4C, 5C, HiC and mi-
croC. In these techniques, first, physically proximal chromatin segments are crosslinked
by certain chemicals such as formaldehyde, as shown in Fig. 1.4. The crosslinked regions
are then cut using restriction enzymes, separated out and sequenced. The sequenced
segments are mapped back to the known genomic regions revealing the identity of the
physically proximal regions. The result of these experiments are often represented in the
form of a heatmap where the x and y axes indicate genomic segment locations along the
contour; the elements of the heatmap (a matrix) reflect the contact frequency between
the segments. One can easily observe high contacts (higher intensity) along the diagonal,
indicating more contacts between the genomic segments which are nearby along the con-
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Hi-C contact map

Figure 1.5: Contact probability map from Hi-C experiment. This shows the intense area near di-

agonal indicating contact between the neighbouring chromatin regions. Many interesting structure

can be seen throughout the matrix. This plot is reproduced from Lieberman-Aiden et al. [77].

tour. Far away regions come in contact less often. However, interestingly, there are many
sub-regions that are very often in contact (see various structures in Fig.1.5).

These experiments provided evidence for the existence of A and B compartments, with
A being mostly composed of open and active chromatin while compartment B typically
consists of repressed and condensed heterochromatin. It has been observed that these
compartments are enriched with intra-compartmental interactions with minimal inter-
compartmental interactions. The high throughput data on contacts between chromatin
segments generated from these biochemical experiments have been extremely useful to
study chromatin organization.

Detailed Hi-C studies revealed the importance of many high-intensity square struc-
tures, mostly near the diagonal axis of the Hi-C contact maps. These suggest that chro-
matin is organised in the form of domains with more contact within the domain and lesser
contact between the di↵erent domains [92, 37]. It was found that, broadly, there are (at
least) two kinds of domains [107]. One set of domains that are bounded by CCCTC-
binding factor (CTCF) forms looped structures. Other set of domains are self-assembled
without CTCF forming a loosely compact structure. Even though all these domains are
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often termed as “topologically associated domains”, there is a debate on the precise name
and nature of these domains [140, 109].

It has been hypothesized that loop extrusion and/or phase separation could be the
mechanism for the formation of these domains [3, 109, 86]. In the loop extrusion pic-
ture, chromatin regions are actively brought together with the help of proteins like co-
hesins/condensins and held together by CCCTC-binding factor (CTCF) [107, 109, 57,
49]. However, CTCF-dependent loops are found only in a fraction of the domains [107,
69]. Hence an alternative proposal is that chromatin domains may also be passively
formed via phase separation [86, 88, 62]. Recently, it has been shown that in the absence
of loop extruding factors, chromatin does still form domains and execute the necessary
biological function[86, 18, 13, 69, 55] indicating that micro phase-separation might be an
important mechanism. Phase separation is also known to bring together certain enhancers
and promoters, segregating them from other regions [88, 62, 121]. In certain cases, as far
as biological function is concerned, there is an ongoing debate whether the actual contact
is crucial or proximity — closeness in 3D without being physically in contact — would
su�ce [86, 13, 144, 138].

The findings of these experiments have remarkably improved our understanding of
chromatin. However, these Hi-C experiments have certain limitations. In all these exper-
iments, cells are “fixed”, and what we observe are frozen snapshots. Another limitation
is that these experiments have limited resolution (often many kbs) and cannot reveal the
details at the highest resolution (1bp - 10kb) even if required. The Hi-C method often
gives us population-averaged data, and obtaining single-cell details are relatively more
di�cult with Hi-C. As a complementary method, new live high resolution microscopy
experiments [93, 137, 54, 15, 131] are emerging; however, they are yet to provide us
genomewide information.

1.2 Computational approaches to studying chromatin
organization

Given the recent advances in experimental techniques, there is a large amount of imaging
and biochemical experimental data on chromatin organization that are available. Theoret-
ical and computational studies are indispensable and complementary tools to bridge the
gap in our understanding of genome architecture and cell function. Several attempts have
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been made to understand the 3D organization of the genome using a variety of techniques
developed previously to understand the statics and dynamics of polymers [87, 116, 66,
133, 50, 8, 30, 52, 142, 33, 35, 34].

Similar to developments in experimental studies, computational/theoretical investiga-
tions too have been trying to study chromatin at di↵erent lengthscales and timescales.
There have been many models that investigated the nucleosome organization and subse-
quent 3D organization of nucleosomes into 30nm fibres and other possible higher-order
organization at the nucleosome resolution [11, 42]. There have also been models that
investigate how chromatin is organized into territories. In a set of recent papers [50, 1],
it has been argued that non-thermal activities arising from transcription and other cellular
processes can be crucial for the understanding organization of chromatin into territories.

There have been a set of models that focused on understanding the 3D organization of
single chromatin based on the Hi-C and imaging data [34, 35, 130]. Since the typical res-
olution of these experiments are not very high, and the nucleosome-resolution model for
the whole chromatin is computationally very expensive, nearly all these models coarse-
grained the chromatin into a polymer with the basic monomer unit representing 1mb or
many kbs of the genome. Early Hi-C experiments revealed that the contact probability (p)
decays as a function of genomic length (s) as p ⇠ s��s , where the exponent is found to be
�s ⇡ 1. This exponent was di↵erent from the equilibrium globule (p ⇠ s�1.5). This led to
the proposal that chromatin is organized as a fractal globule (p ⇠ s�1) [76]. The formation
of loops of various sizes was evident from these experiments, but the mechanism of loop
formation was still debated. This led to the hypothesis that such long loops need to be
actively formed, and a loop extrusion mechanism was proposed [3]. The finding of CTCF
dependent loop formation [107] and in vitro extrusion by loop extruding factors like co-
hesin lent credence to this hypothesis [51]. Since then, there have been many studies that
investigated various aspects of loop extrusion and the role of loop extruding factors in
chromatin organization [57, 112].

Several computational/theoretical e↵orts have been made to unravel chromatin orga-
nization features based on the contacts information provided by the HiC-like experiments.
One of the approaches is the String and Binder Switch (SBS) model, where they consider
chromatin as a polymer string with many di↵using binders promoting interaction. Studies
based on this model have investigated various aspects of chromatin, including the coex-
istence of euchromatin and heterochromatin (polymer chain from good solvent to poor
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solvent limit) [27, 31, 4, 16]. Chromatin has also been modeled as a copolymer chain
where di↵erent kinds of beads representing di↵erent regions/domains of chromatin. This
led to many interesting features such as observation of glassy behaviour [120]. Polymer
models such as Chrom3D [101, 23, 98, 46, 24] consider HiC as well as lamin associated
data and predict certain features of lamin associated domain regulation in cells. Polymer
models accounting for histone modifications and other ChIP-Seq data investigate the role
of “epigenomics-driven interactions in shaping the 3D genome” [34, 90] and investigate
generic principles of chromatin folding. Polymer models at the nucleosome level explic-
itly modeling the histone tail modifications have shown interesting 3D organization of
chromatin-based on 1D epigenetic data [67, 81, 113].

Forward models and the need of an inverse model Nearly all the computational studies
do conventional “forward” polymer simulations. They start with a known set of potential
energy functions and simulate the chromatin using Monte Carlo or Brownian dynamics
methods. However, in the case of chromatin, we do not know the precise potential en-
ergy parameters for intra-chromatin interactions. HiC-like experiments tell us that there
are many intra-chromatin crosslinking-like interactions; however, we do not know the
strength of these interactions. Hence, to understand chromatin organization accurately
based on HiC experimental data, one requires an “inverse” approach. That is, we need to
compute the optimal interaction strength, given the contact probability from HiC experi-
ments.

Many of the models that use Hi-C data convert contact counts obtained from Hi-C
experiments into spatial distances, using a pre-decided formula [47, 38, 132, 108, 9, 100,
99]. That means, given a contact count matrix, such methods do not predict the distances
between di↵erent chromatin segments; rather, they take the distance values as inputs based
on certain assumptions. They then use conventional Monte Carlo (or equivalent) methods
to find steady-state configurations of the chromatin, given a distance map between di↵er-
ent DNA segment pairs. In other words, the existing models consider this as a “forward”
problem of computing equilibrium configurations of chromatin as a consequence of as-
suming a certain spatial distance between bead-pairs. However, the problem of computing
3D configurations of chromatin polymer, given a contact map, is not a “forward” problem
but rather an “inverse” problem [84]. The question is, given a contact map, what are the
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optimal interactions between di↵erent segments of chromatin such that the experimentally
seen contact map emerges.

In the literature so far, minimal work is done to recover an ensemble of chromatin con-
formations consistent with the experimentally generated contact probabilities. Meluzzi
and Arya [85] proposed a prototype model that does not require conversion of contact
probabilities to mean spatial distance based on a predetermined relation, unlike most com-
putational studies. Instead, they suggest an iterative technique to optimize the potential
parameters, which would satisfy the experimental contact probability constraints. How-
ever, they did not apply this to study any real chromatin regions using experimentally
measured contact maps. Also, a limitation of their model is that they have considered
a harmonic spring potential responsible for the interaction between any pair of beads.
This is not fully consistent with the short-range nature of intra-chromatin interactions that
breaks beyond certain extension. An inverse model like this with short-range potential
mimicking the protein-protein interaction is important to appropriately study chromatin
organization and dynamics.

Our approach

Our broad aim is to study 3D chromatin organization and dynamics consistent with cur-
rently known experimental findings. Given a set of experimental data, we want to use
computational methods to investigate and predict chromatin organization in space and
time. Given that Hi-C experiments do not give us any information about chromatin poly-
mer dynamics, the high-intensity elements of the contact matrix is often imagined as a
set of static contacts holding together di↵erent regions of chromatin [96]. In this work,
we question this notion and study chromatin polymer fluctuations and dynamics by con-
verting the contact probability matrix to optimal interaction energies through an inverse
strategy. As a first step, note that experimentally inferred contact probability values for
nearly all segments pairs are very small, mainly of the order of 10�1, 10�2 or smaller. This
implies that the contacts will be often broken, and the chromatin polymer can be highly
dynamic. Even in a steady state, there are likely to have large fluctuations, cell to cell vari-
ability and temporal variability within a single cell. While there have been many studies
to understand the 3D shapes and contacts, there is very little understanding of polymer
fluctuations and cell-to-cell variability. It is important to quantify the fluctuations and
dynamics in a way that is consistent with what is observed experimentally.
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1.3 Specific objectives of the thesis

To fulfil the research shortcomings and to improve our understanding of chromatin organ-
isation and its relevance in function of the cell, the objective of the current work are listed
below:

1. Modeling intra-chromatin interactions: Conventionally, studies have been using
harmonic springs between interacting pairs of chromatin. This implies an attractive
force between these pairs that do not decay with distance but instead increases.
Even if one takes harmonic spring with a cut-o↵ length, there is an artificially
induced sudden change in the potential leading to a discontinuous derivative like
force. To overcome this limitation, we intend to use a short-range potential suit-
able for chromatin polymer where the interaction energy decays with distance and
smoothly reaches zero at the cut-o↵ distance.

2. Development of an algorithm to calculate intra-chromatin interaction strengths
based on chromatin conformation capture experiments: Since we do not know
the precise interaction strengths of intra-chromatin interactions, we want to develop
an algorithm that would compute the optimal interaction strengths between di↵erent
chromatin segments based on the contact probability values from chromatin confor-
mation capture experiments. In other words, our objective is to develop an inverse
algorithm to compute interaction strengths, taking the contact map as the input. We
will test the robustness of the algorithm on a prototype and also apply this for a real
chromatin domain.

3. Investigating the 3D organization of chromatin on the lengthscale of a few
genes: Once we compute the intra-chromatin interaction strength, we will simulate
chromatin organization and study structural properties such as radius of gyration,
shape functions and density profiles. To do this, we will consider a chromatin do-
main spanning a few gene loci and di↵erent epigenetic states such as active and
repressed states.

4. Prediction of fluctuations in chromatin domain and its dynamics: Going beyond
the average static properties, we aim to study quantities that capture the fluctuations
of chromatin segments, such as the distance distribution of chromatin segments. We
plan to examine distance distribution between di↵erent segments of a chromatin
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domain under di↵erent epigenetic conditions. We will also study the dynamics of
chromatin segments.

5. Study the role of hydrodynamic interactions (HI) in chromatin folding: Crucial
molecular scale physics such as hydrodynamic interactions play an important role in
determining the dynamic properties of a polymer chain. Here in the present work,
we aim to study the influence of hydrodynamic interactions on all the dynamic
properties of chromatin polymer.

In this thesis, we use Brownian dynamics simulations to study chromatin configura-
tions, their fluctuations around the steady state configurations and dynamics within the
domains, taking ↵-globin gene region as an example. In Chapter 2, we present the gov-
erning equation and simulation techniques used in this thesis. We used a novel potential to
represent the intra-chromatin interaction. The details of the potential and the estimation of
the cut-o↵ parameters is provided in Chapter 3. We then develop an “inverse” algorithm
to obtain the optimal interaction strength parameters that recover the known measurable
properties such as contact probability. Chapter 4 provides the details on the development
of the “inverse” technique as well as its validation with a prototype. In Chapter 5, we
solve the inverse problem and obtain the optimal interaction parameters for the ↵-globin
domain. In Chapter 6, we compute fluctuations in spatial and temporal quantities associ-
ated with a chromatin domain; we quantify this by computing the probability distribution
of distances between various segments of chromatin and argue that the chromatin state is
not dictated by an average 3D distance rather a wider distribution having multiple peaks.
We also compute the distributions in loop formation time and contact time. Finally, in
Chapter 7, we conclude the thesis by discussing the significance of these findings and
providing a summary & future outlook.



Chapter 2

Brownian dynamics simulations to
compute the statics and dynamics of
chromatin polymer

This chapter describes our model for chromatin, and the simulation method we imple-
ment. We will be using a bead-spring chain polymer model to study chromatin and sim-
ulate it using the Brownian dynamics simulation method. The aim is to investigate static
and dynamic properties of chromatin polymer on the lengthscale of a few genes. The
set of governing equations for the bead-spring chain model with a spring force, and with
hydrodynamic and excluded volume interactions incorporated, are presented here.

2.1 Chromatin as a bead-spring chain

Since chromatin is a long polymer, we coarse grain the system and model it as a bead-
spring chain made of N beads each having radius a, with polymer connectivity introduced
by N�1 elastic springs, as shown in Fig. 2.1. In general, the bonded potential between the
adjacent beads can be modeled by the spring potential such as Hookean, Fraenkel, FENE
or a potential derived from worm-like chain force-extension relation etc [19, 110]. In this
thesis we have mostly used the Fraenkel and FENE springs. Below we describe these two
spring potentials in detail.
Fraenkel spring: A Fraenkel spring is similar to a Hookean spring with a pre-determined
natural length. The force in the Fraenkel spring is directly proportional to the extension
or compression of the spring from its natural length, and the corresponding energy is

15
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Figure 2.1: Schematic representation of bead-spring chain model, The adjacent beads are

connected by elastic springs. The red bonds between beads represent protein-mediated intra-

chromatin interactions.

described as

US =
X

µ

H
2

(|rµ � rµ+1| � r0)2 (2.1)

where, rµ is the position vector of bead µ, r0 is the natural length and H is the sti↵ness of
the spring [21].

FENE spring: In the bead-spring simulation literature, a finitely extensible nonlinear
elastic (FENE) spring is used to model a situation where a spring cannot be extended
beyond a certain length, and where the tension force increases non-linearly as the spring
length reaches its maximum permissible length. The FENE spring potential is given by
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where Q0 is the maximum stretchable length of a single spring, rµ⌫ is the distance between
the µth and ⌫th bead.

Potential energy representing excluded volume and protein-protein interactions: Ex-
cluded volume refers to the idea that one part of a chain can not occupy space that is
already occupied by another part of the chain. This is also known steric hindrance. Con-
ventionally, the excluded volume or steric hindrance is modelled by the Weeks-Chandler-
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Andersen (WCA) potential or the repulsive part (r  21/6�) of the Lennard-Jones (LJ)
potential given as
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8>>>>>>><
>>>>>>>:

4✏LJ

"✓�
r

◆12
�

✓�
r

◆6
+

1
4

#
; r  21/6�

0; r > 21/6�

(2.3)

ULJ = 4✏LJ

"✓�
r

◆12
�

✓�
r

◆6
#

(2.4)

Here r = (rµ � r⌫) is the distance between beads µ and ⌫, ✏LJ is the parameter to control
the bead-bead interaction strength. See Fig. 2.2 where these potentials are plotted.

Apart from the excluded volume interaction, di↵erent parts of the chromatin can have
short-ranged attractive interactions mediated by certain specific proteins as shown by
the red bond in Fig. 2.1. This would appear as if di↵erent segments of chromatin are
crosslinked. Such specific interactions between specific chromatin segments can be mod-
elled by the attractive part of the LJ or by a harmonic spring. However, none of these
potentials can accurately model the chromatin crosslinking. For example, in the case of
the harmonic spring potential, the attractive force between segment pairs does not decay
with distance, but rather increases and the attractive part in the LJ potential goes to zero
only at infinite distance. Unlike these potentials, the intra-chromatin interaction is zero
when the two segments are not in proximity.

To overcome the drawbacks of the above potentials, we have used a novel Soddemann-
Dünweg-Kremer (SDK) potential [124] to model intra-chromatin interactions. The en-
ergy function is given by:
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The parameters ↵ and � are determined by applying the two boundary conditions, namely,
USDK = 0 at r = rc and USDK = �✏ at r = 21/6�. The appropriate choice of the cut-o↵
radius rc has been investigated extensively and is present in the next chapter. It has been
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Figure 2.2: Three di↵erent interactions potentials are plotted as a function of the radial distance,

r. The Lennard-Jones (LJ) potential, the Weeks-Chandler-Andersen (WCA) potential and the

Soddemann-Dünweg-Kremer (SDK) potential. The parameters used here are ✏ = ✏LJ = 2.0,

� = 1, and rc = 1.5.

shown that a value of rc = 1.82� leads to an accurate prediction of the static properties
of a polymer chain in poor, theta and good solvents. The same value is adopted here in
the present study. A comparison is drawn in Fig. 2.2 between the SDK potential and the
conventional LJ and WCA potentials, the expressions of which are given in Eq. (2.4) and
Eq. (2.3), respectively.

The SDK potential has the following advantages compared to the LJ potential:

1. the complete range of solvent qualities, from poor to athermal, can be explored by
varying the single parameter, ✏, which can alter the attractive component of the SDK
potential without a↵ecting the repulsive force (i.e. steric hindrace). On the contrary,
for the LJ potential it is not possible to vary the attractive interaction without also
a↵ecting the repulsive part.

2. Protein-mediated interactions in chromatin are like e↵ective “bonds” formed and
broken with a finite range of interaction. Unlike the LJ potential, the SDK potential
has a finite attractive range —the SDK potential energy smoothly reaches zero at
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the cut o↵ radius, rc, whose value is set by the choice of two parameters ↵ and �.

2.2 Governing equation

The configurational state of the chain is completely specified by {r⌫ ⌫ = 1, ....,N}, the set
of position vectors of the beads. The configurational distribution function,  (r1, ..., rN , t)
for the chain is obtained using the Fokker-Planck equation:
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In this equation, the force F⌫ (F⌫ = �@U/@r⌫) is the net force on the i th bead arising
as a result of all the conservative intramolecular interactions. It is the sum of net force
exerted on the i th bead by the springs adjacent to it, and the force due to excluded volume
interaction. �µ⌫ is the di↵usion tensor representing hydrodynamic interactions (HI). HI
account for the modification of the drag force on a particle that arises due to the motion
of other particles mediated by the solvent. A schematic diagram depicting hydrodynamic
interactions is shown in figure-2.3.

We have non-dimensionalized the equations using the characteristic time-scale, �H =

⇣/4H (where ⇣ is the Stokesian bead-friction coe�cient, which is related to the bead ra-
dius a through ⇣ = 6⇡a⌘s with ⌘s being the viscosity of the solvent), and the characteristic
length-scale, lH =

p
kBT/H (where kB is the Boltzmann’s constant, T is the absolute tem-

perature and H is the spring constant). It is to be noted that non-dimensionalization can
be performed in di↵erent ways. Appendix A.1 contains the non-dimensionalization in
two ways and shows that both leads to same results, when converted to dimensional units.
Dimensionless quantities are denoted with an asterisk as a superscript, such that
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Scaling the variables as shown above, the dimensionless Fokker-Planck equation is ob-
tained as follows.
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The HI between any pair of beads is taken into account through the dimensionless di↵u-
sion tensor �µ⌫ = �µ⌫� � ⇣⌦µ⌫, where �µ⌫ is the Kronecker-delta, � is the unit tensor and
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Figure 2.3: Pictorial representation of hydrodynamic interactions in a bead-spring chain. Distur-

bance in the motion of the red bead is propagated to all other beads through the solvent

⌦µ⌫ is the tensor representing the HI between the i th and j th beads.

⌦µ⌫ = ⌦(r⇤i � r⇤j) (2.9)

We use the regularized Rotne-Prager-Yamakawa (RPY) tensor to represent HI; its form is
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where h⇤ is the dimensionless bead radius in the bead-spring model, defined as h⇤ =

a/(lH
p
⇡). Typical values of h⇤ lie between 0 and 0.5.
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2.3 Brownian Dynamics simulation

The Itô stochastic di↵erential equation for the chain configuration equivalent to the Fokker-
Planck equation Eq-2.8 is given by

dr⇤⌫ = D(r⇤⌫)dt⇤ + B(r⇤⌫) · dW⇤ (2.13)

where each component of W is an independent Wiener process. The function D(r⇤⌫) cor-
respond to the drift term in the Fokker-Plank equation and the tensor B(r⇤⌫) corresponds
to the di↵usion term, which is chosen in such a way that

B · BT =
1
2
� (2.14)

Equation-2.13 can be solved through numerical integration. We will use the derivative
free, second-order scheme as it is computationally better than other methods. A stochas-
tic trajectory is generated by calculating the conformation of a single chain at the end of
each successive time step. This can be performed in two steps, first predictor step which
is followed by the corrector step [105].

Predictor Step

r0⇤⌫ (t⇤ + �t⇤) = r⇤⌫(t⇤) + D(r⇤⌫)�t⇤ + B(r⇤⌫) · �Wµ (2.15)

where r0⇤⌫ (t⇤ +�t⇤) is the configuration at the end of predictor step of the n+ 1th time step
and r⇤⌫ is the configuration at the end of the correcter step of nth step.

Corrector Step
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Using such an implicit formulation and solving for r⇤i (t⇤ +�t⇤) leads to greater stability of
the numerical algorithm which permits the use of larger time steps, which, in principle,
should lead to a reduction in the CPU-time required for the simulation of a bead-spring
chain.
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Table 2.1: Definitions of shape functions in terms of eigenvalues of the gyration tensor, G. Note
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2.4 Quantifying chromatin macrostates

Since we are interested in the 3D organization of chromatin, we use a number of di↵erent
static properties to describe the shape of the equilibrium chromatin chain. One such
property defining a macrostate of chromatin polymer is the radius of gyration of the chain
defined as, Rg ⌘

q
hR2
gi, where hR2

gi can also be defined by

hR2
gi = h�

2
1i + h�

2
2i + h�

2
3i (2.17)

with, �2
1, �2

2, and �2
3 being the eigenvalues of the gyration tensor G (arranged in ascending

order), with

G = 1
2N2

NX

⌫=1

NX

µ=1

rµ⌫rµ⌫ (2.18)

Note that, G, �2
1, �2

2, and �2
3 are calculated for each trajectory in the simulation before the

ensemble averages are evaluated. The asymmetry in equilibrium chain shape has been
studied previously in terms of various functions defined in terms of the eigenvalues of the
gyration tensor [73, 125, 145, 59, 127, 134, 22]. Apart from �2

1, �2
2, and �2

3, themselves,
we have examined the following shape functions: the asphericity (B), the acylindricity
(C), the degree of prolateness (S ), and the shape anisotropy (2), as defined in Table 2.1.
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Eigenvalues of the radius of gyration tensor for polymer chains are usually reported
in terms of ratios, either between individual eigenvalues or with the mean-square radius
of gyration. For a chain with a spherically symmetric shape about the centre of mass, we
expect h�2

i i/hR
2
gi = 1/3, for i = 1, 2, 3, and h�2

i i/h�
2
ji = 1 for all combinations i and j.

For chain shapes with tetrahedral or greater symmetry, the asphericity B = 0, otherwise
B > 0. For chain shapes with cylindrical symmetry, the acylindricity C = 0, otherwise
C > 0. With regard to the degree of prolateness, its sign determines whether chain shapes
are preponderantly oblate (S 2 [�0.25, 0]) or prolate (S , 2 [0, 2]). The relative anisotropy
(2), on the other hand, lies between 0 (for spheres) and 1 (for rods). We have analysed the
↵-globin gene locus using these macroscopic properties which is given in the following
chapters.

2.5 Summary

In this section, we discuss the bead-spring model of polymer. We provided the potentials
for di↵erent types of spring which represents the connectivity of the beads in a chain. We
discussed various interbead potentials to mimic the steric hinderance and intra-chromatin
interactions. A novel SDK potential to crosslink polymer segments, and its advantages
over the conventional potential has been stated. We then provided the governing equation
and the simulation techniques for the bead-spring chain. Some of the static macroscopic
properties and its calculation from the ensemble of configurations has been given here.
Finally, we point out certain limitation of our polymer model.





Chapter 3

Soddemann-Dünweg-Kremer (SDK)
potential for intra-chromatin
interactions

In this chapter, we discuss a novel potential to study intra-chromatin interactions, namely
the Soddemann-Dünweg-Kremer (SDK) potential, that we briefly introduced in the pre-
vious chapter. The potential has many advantages as discussed earlier. However, we need
to tune the parameters such that it reproduces the know scaling laws in all the solvent
regimes ranging from good to poor.

The repulsive part of the SDK potential is similar to the WCA potential, but the at-
tractive part is modelled by the cosine function as

USDK =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

4
"✓�

r

◆12
�

✓�
r

◆6
+

1
4

#
� ✏; r  21/6�

1
2
✏

"
cos (↵

✓ r
�

◆2
+ �) � 1

#
; 21/6�  r  rc

0; r � rc

(3.1)

The constants ↵ and � are determined by applying the two boundary conditions, namely,
USDK = 0 at r = rc, and USDK = �✏ at r = 21/6�. Based on these two boundary conditions,
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↵ and � are calculated by solving the following set of equations,

21/3↵ + � = ⇡ (3.2)
✓rc

�

◆2
↵ + � = 2⇡ (3.3)

In order to solve the above set of equations, it is required to choose a reasonable value
of the cut-o↵ radius, rc. In the original study by Soddemann et al. [124], rc was chosen
to be 1.5� to include only the first neighboring shell of interactions, determined from
the first minimum of the pair correlation function. For rc = 1.5�, the values of ↵ and
� are calculated to be 3.1730728678 and �0.856228645, respectively [124], and the re-
sultant SDK potential has been used to investigate various equilibrium properties of the
solutions of polymer chains using molecular dynamics (MD) and Monte Carlo (MC) sim-
ulations [124, 127].

In sec. 3.1, we determine the theta and onset of poor solvent for the SDK potential
with rc = 1.5� and investigate the scaling laws in all the solvent regimes. We observe the
deviation from the know scaling law in poor solvents and consequently modify the SDK
potential cuto↵ in sec. 3.2 for accurate reproduction of scaling behavior in all solvent
regimes ranging from good to poor.

3.1 Theta point and poor solvent onset determination

For a linear polymer chain, the mean-squared radius of gyration follows the universal scal-
ing law R2

g ⇠ (N � 1)2⌫, where the value of the Flory exponent, ⌫, depends on the solvent
quality. At the ✓-temperature, linear polymer chains follow RW statistics, with ⌫ = 1/2,
leading to the ratio R2

g/(N � 1) to be independent of the chain length, N. Whereas, in the
case of good and poor solvents, ⌫ takes the values 3/5 and 1/3, respectively [111]. For
polymer chains with the SDK potential representing the excluded volume force, the tem-
perature dependence can be captured with the potential well-depth, ✏. As mentioned ear-
lier, ✏ = 0 (which is equivalent to a WCA potential), represents the athermal limit, where
the chain is fully swollen. With increasing values of ✏, a unique value is reached, where
the repulsive and attractive interactions between pairs of beads are precisely balanced,
leading to ✓-like conditions. The value of ✏ at the ✓-point can be estimated by plotting
the ratio R2

g/(N � 1) versus ✏ for di↵erent chain lengths, N, and finding the point of inter-
section at which curves for di↵erent values of N intersect, as shown in Fig. 3.1(a) [127].
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Figure 3.1: (a) The ratio R2
g/(N � 1) as a function of the well depth of the SDK potential, ✏, used

to estimate the ✓-point for the cuto↵ radius rc = 1.5�. (b) The ratio R2
g/(N � 1)0.67 as a function

of the well depth of the SDK potential, ✏, used to estimate the onset of poor-point for the cuto↵

radius rc = 1.5�. The symbols represent simulation data and the dotted lines are drawn to guide

the eye.
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Similarly, the onset of poor-point can be estimated by plotting the ratio R2
g/(N�1)0.67 ver-

sus ✏ for di↵erent chain lengths, N, and finding the point of intersection at which curves
for di↵erent values of N intersect, as shown in Fig. 3.1(b). Following this procedure, the
✓-point for a homopolymer chain with beads connected by FENE springs having a max-
imum stretchable length of Q0

2 = 50.0, is found to be ✏ = 0.72. All the simulations to
study the cut-o↵ radius of SDK potential use a value of Q2

0 = 50.0. Note that the notation
Q2

0 used here is the same as the more commonly used FENE b-parameter. With increasing
values of ✏ beyond ✏ = 0.72, the chain begins to collapse due to decreasing solvent qual-
ity. As mentioned earlier, in the limit of a poor solvent, linear polymer chains obey the
scaling law Rg ⇠ (N � 1)1/3, indicating that the chains are space filling. The simulations
presented in this chapter are carried out for di↵erent chain lengths, N, ranging from 25 to
90 beads per chain, with an equilibration run of about 8 Rouse relaxation times [94] and
a production run of 6 to 8 Rouse relaxation times with a non-dimensional time step size
�t⇤ = 0.001. Data from each independent trajectory in the simulations are collected at an
interval of 1000 to 5000 non-dimensional time steps over the entire production run and
time averages are calculated over each of the trajectories. Average equilibrium properties
and error of mean estimates are evaluated over an ensemble of such independent time
averages consisting of 1000 to 2000 independent trajectories.

Fig. 3.2 (a) studies the chain length dependence of R2
g for various well depths ✏. For

✏ = 0 (the athermal limit) and ✏ = 0.72 (the ✓-point), the expected power law exponents of
1.2 and 1.0, respectively, are observed. For intermediate values in the crossover regime,
0 < ✏ < 0.72, one expects, strictly speaking, a curve beginning with slope 1 at small
values of N, and gradually increasing to 1.2 for asymptotically long chains. However, for
the fairly short chains studied here, this curvature is very hard to observe; instead the data
can be well described in terms of an e↵ective exponent, whose variation with ✏ is shown
in Fig. 3.2 (b). An analogous crossover from a slope of 1.0 to (2/3) is expected as the
well depth is increased beyond the ✓ value of 0.72, with the e↵ective exponent remaining
at (2/3) for su�ciently large ✏. However, as can be seen from Figs. 3.2 (a) and (b), the
“asymptotic” slope at ✏ = 1 seems to be only 0.35, which is obviously unphysical, if inter-
preted as an asymptotic scaling law. We can only speculate here about the reasons for this
behaviour — since we were able to “cure” the problem without a detailed investigation,
we did not attempt to analyse it in depth. However, a few observations may be made.

Firstly, Fig. 3.2 (a) shows clearly that the data at ✏ = 1 are hampered by equilibra-
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Figure 3.2: (a) The mean-squared radius of gyration as a function of the number of beads in

a chain. The blue-coloured symbols are for di↵erent values of well-depth, ✏, in the absence of

hydrodynamic interactions. • ✏ = 0, N ✏ = 0.2, ⇤ ✏ = 0.4, I ✏ = 0.6, J ✏ = 0.72, + ✏ = 0.8,

⌥ ✏ = 0.92 and ⌅ ✏ = 1. The same symbols are used with a red colour for simulations with

hydrodynamic interactions. The straight lines are of slope 2⌫ at di↵erent values of ✏. (b) E↵ective

exponent 2⌫ versus the well-depth, ✏, for cuto↵ radius rc = 1.5�.
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Figure 3.3: The second virial coe�cient B2 of the SDK potential, compared with the correspond-

ing value for the LJ potential, as a function of the cuto↵ radius, rc, for well-depths ✏ = ✏LJ = 1.0,

and � = 1.

tion problems. This becomes obvious via the comparison of data accumulated with and
without hydrodynamic interactions, which, as static averages, must be identical if strict
thermal equilibrium and su�cient sampling is achieved. Secondly, it has already been
pointed out in works of Soddemann et al [124] that the SDK potential with rc = 1.5�
has a propensity to induce crystallisation, i.e., highly ordered structures. It is then quite
conceivable that the growth of a highly collapsed globule with chain length occurs essen-
tially in a layer-by-layer fashion, which would then give rise to a fairly abrupt increase of
R2
g as soon as a new layer begins to be populated. The small slope of 0.35 that we observe

in Fig. 3.2 (a) may then perhaps be part of a quasi-plateau that corresponds to oscillations
that are added on top of the leading N2/3 behaviour.

3.2 The cut-o↵ radius for the SDK potential

Prompted by the experience with using a simple Lennard-Jones potential in analogous
studies of collapsing polymer chains [115], which did not exhibit this problem, we at-
tempted to solve it by modifying the SDK potential such that it would mimic more closely
the attributes of the Lennard-Jones potential. In practice, we adjusted the range of the
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SDK potential rc by requiring that, for ✏LJ = ✏ = 1 and � = 1, both potentials give rise
to the same value of the second virial coe�cient, which is easily calculated by evaluating
the Mayer f -function [111]. It is defined as the di↵erence between the Boltzmann factor
for two monomers at a distance r and at infinite distance. The Mayer f -function is given
by

f (r) = exp
"
�U(r)
kBT

#
� 1 (3.4)

At short distance, the Mayer function is negative because of the large energy U(r) at
a short distance due to hard-core repulsion. The probability of finding monomers at this
distance is highly reduced relative to the non-interacting case i.e. monomers at infinite
distance. The excluded volume is defined as the negative integral of the Mayer function
over the whole space.

B2 = �

Z
1

0
f (r) d3r

=

Z
1

0
(1 � exp[�U(r)/kBT ]) d3r

=

Z
1

0
4⇡r2(1 � exp[�U(r)/kBT ]) dr

(3.5)

Matching this value with the corresponding LJ value results in rc = 1.82� (see
Fig. 3.3), for which ↵ = 1.5306333121 and � = 1.213115524. In view of the remarks
made earlier, it is well conceivable that such a smoother potential will exhibit less pro-
nounced oscillations or perhaps none at all.

As seen in Fig. 3.4 (a), the e↵ective exponent shows a gradual decrease from 1.2 at
✏ = 0 to 0.67 at ✏ = 0.55, and it remains constant at 0.67 well beyond ✏ = 0.55, as shown
in Fig. 3.4 (b). The values of the mean-squared radius of gyration, R2

g, are reproduced
with HI for ✏ = 0, 0.45 and 1.0, for di↵erent chain lengths and found to be consistent
with the results without HI (as seen in Fig. 3.4 (a)). All subsequent results reported here
with the SDK potential are for rc = 1.82�. Finally, we determine the ✓-point and onset
of poor solvent point for this value of rc as before. As shown in Fig. 3.5, we find it occurs
at ✏ = ✏✓ = 0.45. By varying the depth of the SDK potential, the entire range of solvent
quality (from good to poor) can be achieved.

As we have seen previously that the system was not in equilibrium at certain ✏ values
with SDK potential at cuto↵ 1.5�. We further need to confirm that the system is in its
equilibrium state at all values of ✏ with SDK potential at cuto↵ 1.82�. To validate the
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(a)

(b)

Figure 3.4: (a) The mean-squared radius gyration versus number of beads in a chain. The blue-

coloured symbols are for di↵erent values of well-depth, ✏, in the absence of hydrodynamic inter-

actions. • ✏ = 0, N ✏ = 0.2, ⇤ ✏ = 0.4, I ✏ = 0.45, J ✏ = 0.55, + ✏ = 0.6, ⌥ ✏ = 0.7 and ⌅ ✏ = 0.8,

⌃ ✏ = 1, 4 ✏ = 2 and ⇤ ✏ = 3. The same symbols are used with a red colour for simulations with

hydrodynamic interactions. The straight lines are of slope 2⌫ at di↵erent values of ✏. (b) Exponent

2⌫ versus the well-depth, ✏, at cuto↵ radius rc = 1.82�.
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(a)

(b)

Figure 3.5: (a) The ratio R2
g/(N � 1) versus the well depth of the SDK potential, ✏, to estimate

the ✓-point for cuto↵ radius rc = 1.82�. (b) The ratio R2
g/(N � 1)0.67 versus the well depth of the

SDK potential, ✏, to estimate the onset of poor-point for cuto↵ radius rc = 1.82�. The symbols

represent simulation data and the dotted lines are drawn to guide the eye. The ✓-point and the onset

of poor-point is estimated as the intersection of all the curves and leads to ✏ = 0.45 and ✏ = 0.55,

respectively.
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equilibrium states, we studied the same system with SDK potential (cuto↵=1.82�) and
HI at three di↵erent values of ✏ i.e. 0.0, 0.45 (theta point) and at 1.0, as shown in Fig. 3.4

3.3 Summary

A smooth and short range pair-wise potential has been introduced in the present chapter.
Theta point and the onset of poor solvent has been investigated using the SDK potential
at a cut-o↵ of 1.5� and the scaling at various solvent qualities has been studied. The
scaling of the radius of gyration has been observed to be in disagreement with the uni-
versal swelling of homopolymers in the poor solvent regime. Also, the simulations with
hydrodynamic interactions indicated that the polymer chains are not equilibrated after
su�ciently long trajectory. In order to reproduce the excluded volume exerted by the LJ
potential at ✏ = 1 and � = 1, the cut-o↵ of the SDK potential has been modified to 1.82�.
The swelling of the radius of gyration using SDK potential at this cuto↵ of 1.82� has
been observed to be identical with the universal swelling of homopolymers in the thermal
crossover regime. Hence, the cut-o↵ 1.82� for SDK potential is realistic and may be
utilised for further studies.



Chapter 4

Inverse Brownian Dynamics method to
compute optimal intra-chromatin
interaction strengths

The main challenge to simulate chromatin configuration and dynamics is that we do not
know the interaction strength parameters among di↵erent segments. Chromosome con-
formation capture experiments such as 5C and Hi-C provide information on the contact
counts between di↵erent segments of chromatin, but not the interaction strengths that
lead to these counts. Here, in this chapter, we propose a novel method to obtain optimal
interaction strengths between all chromatin segments, given the contact probability be-
tween di↵erent segments. This is an “inverse” method and we implement it here along
with Brownian dynamics simulations and hence it is termed as the Inverse Brownian Dy-
namics (IBD) method. Firstly, in sec. 4.1, we present the IBD method in general terms,
followed by its implementation in the context of a chromatin in sec. 4.2. We test the
robustness of the algorithm by validating it with a prototype as discussed in sec. 4.3.

4.1 Inverse Brownian Dynamics method

The method is best explained in general terms. It is assumed that the system is described
by a phase space variable � and a model Hamiltonian H(�). Another assumption is that
the simulation produces the canonical average of some observable, given by a phase-space
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Figure 4.1: Flowchart for the Inverse Brownian Dynamics (IBD) method. Here p(ref) represents

the reference contact probability matrix, and p(i) represents the contact probability matrix from

simulations at iteration i. The interaction strength between beads i and j is given by ✏µ⌫.

function A(�):

hAi =

R
d� A(�) exp(��H(�))
R

d� exp(��(H)(�))
. (4.1)

Here � = 1/(kBT). On the other hand, we have a given “target” value At (e.g. from
experiment), which will typically di↵er from our simulation result. We are now interested
in the dependence of the Hamiltonian on some coupling parameter J, and we wish to
adjust J in order to bring hAi as closely to At as possible, within the limitations of the
Hamiltonian as such in general, and its dependence on J in particular. In order to do this,
it is desirable to obtain information on (i) in which direction J should modified, and (ii)
by what amount (at least by order of magnitude). If the change of the coupling constant,
�J, is small, we can write down a Taylor expansion around the value J = J0 where we
performed the simulation:

hAi (J0 + �J) = hAi (J0) + ��J + O(�J2), (4.2)
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where the “generalized susceptibility” � is an abbreviation for the thermodynamic deriva-
tive

� =
@ hAi
@J J=J0

. (4.3)

The crucial point is now that � can be directly sampled in the simulation, by making use
of a standard fluctuation relation. Indeed, taking the derivative of Eq. 4.1 with respect to
J, one finds directly

� = � [hABi � hAi hBi] , (4.4)

where B denotes another phase-space function, which is just the observable conjugate to
J:

B(�) = �
@H(�)
@J
. (4.5)

In deriving Eq. 4.4, it is assumed that the phase-space function A(�) does not depend on
J, i.e. @A(�)/@J = 0. This is the case for most typical applications, and certainly for the
present investigation.

The simplest way to do IBD, therefore, consists of (i) neglecting all nonlinear terms
in Eq. 4.2, (ii) setting its left hand side equal to At , (iii) solving for �J, and (iv) taking
J0 + �J as a new and improved coupling parameter, for which a new simulation is done,
and for which the whole process is done again. To avoid overshoots, it is often advisable
to not update J by the full increment �J that results from solving the linear equation, but
rather only by �J = ��J, where � is a damping factor with 0 < � < 1. The iteration
is terminated as soon as |hAi| � At does not decrease any more, within some tolerance.
One also has to stop as soon as � becomes zero, within the statistical resolution of the
simulation (this is, however, not a typical situation).

The method may be straightforwardly generalized to the case of several observables
Am and several coupling parameters Jn, where the number of observables and the number
of couplings may be di↵erent. The Taylor expansion then reads

hAmi (J0 + �J) = hAmi (J0) +
X

n

�mn �Jn + O(�J2), (4.6)

where the matrix of susceptibilities is evaluated as a cross–correlation matrix:

�mn = � [hAmBni � hAmi hBni] , (4.7)
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with

Bn(�) = �
@H(�)
@Jn

. (4.8)

Typically, the matrix �mn will not be invertible (in general, it is not even quadratic!).
Therefore, one should treat the linear system of equations via a singular-value decom-

position (SVD) and find �J via the pseudo-inverse (PI). In practice, this means that one
updates the couplings only in those directions and by those amounts where one has a
clear indication from the data that one should do so, while all other components remain
untouched. For details on the concepts of SVD and PI, the reader may refer to [106]
and [44].

In the chromatin context, the averages hAmi are the contact probabilities as produced
by the simulations, while the target values are the corresponding experimental values (dis-
cussed in greater detail below). The corresponding phase–space functions can be written
as indicator functions, which are one in case of a contact and zero otherwise. The coupling
parameters that we wish to adjust are the well depths of the SDK attractive interactions,
which we allow to be di↵erent for each monomer pair. The schematic representation of
the IBD algorithm is provided as a Flowchart in Fig. 4.1. The IBD algorithm discussed
here in general terms is described in more detail in the section below.

4.2 IBD implementation

This section discusses the implementation of the IBD method in the context of a chromatin-
like bead-spring chain as discussed in the Chapter 2. The phase-space variable (�) for the
coarse-grained bead-spring chain used to represent chromatin is the set of bead posi-
tion vectors r⌫(⌫ = 1, 2, ...,N) and the Hamiltonian H(�, {✏µ⌫}) = US⇤ + USDK⇤, where

US⇤ =
N�1P
⌫=1

US⇤
⌫ and USDK⇤ =

NP
⌫,µ=1

USDK⇤
µ⌫ . Since we are interested in bead-pairs, we con-

struct a single index to represent any particular bead-pair. For instance, the expression

m =
1
2

[⌫(⌫ � 1)] + [µ � (⌫ � 1)] (4.9)

converts any bead pair (⌫, µ) to a single index m. Here ⌫ varies from 2 to N, and µ varies
from 1 to (⌫ � 1) for a matrix of size N. In terms of the single index, the average contact
probability pm of the bead-pair m is given by

pm = h p̂mi =
1
Z

Z
d� p̂m exp(��H) (4.10)
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Here, the partition function Z =
R

d� exp(��H), and p̂m is an indicator function which
indicates when contact occurs between the bead pair represented by index m. p̂m is 1 if
the distance between the beads is less than the cut-o↵ distance of the indicator function,
r⇤p, and 0 otherwise. For this work r⇤p = r⇤c , the cut-o↵ distance of the SDK potential.
We intend to target the experimentally obtained contact probability pref

m by adjusting the
well-depth of SDK attractive interactions ✏m. The Taylor series expansion of h p̂mi about
the interaction strength ✏m after neglecting higher order terms is

h p̂mi(✏m + �✏m) = hp̂mi (✏m) +
X

n

�mn �✏n (4.11)

where �✏m is the change in the interaction strength, and the susceptibility matrix

�mn =
@hp̂mi

@✏n
=

@

@✏n

"
1
Z

Z
d� p̂m exp(��H)

#
(4.12)

Simplifying further

�mn =
1
Z

"Z
p̂m

@

@✏n

�
exp(��H)d�

�
#
�

"
1
Z

 
1
Z

Z
p̂m exp(��H)d�

!
@Z
@✏m

#
(4.13)

or

�mn =
�

Z

"Z
p̂m exp(��H)

@(�H)
@✏n

d�
#
� �

"
hp̂mi

1
Z

Z
exp(��H)

@(�H)
@✏n

d�
#
, (4.14)

Defining the quantity bn by

bn = �
@H

@✏n
(4.15)

and using the expression for SDK potential, since only USDK⇤
n depends on ✏n, one can

show

bn =

8>>>>>>><
>>>>>>>:

1 r⇤n  2 1
6�⇤

1
2

h
1 � cos(↵ r⇤2n + �)

i
2 1

6�⇤  r⇤n  r⇤c
0 r⇤n � r⇤c

(4.16)

which leads to

�mn = �

"
1
Z

Z
p̂mbn exp(��H)d� � h p̂mi

1
Z

Z
bn exp(��H)d�

#
= �

⇥
hp̂mbni � h p̂mihbni

⇤

(4.17)
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Replacing the left hand side of Eq. 4.11 with the target contact probability pref
m obtained

from experiment, we get

pref
m � h p̂mi =

X

n

�mn �✏n (4.18)

Equation 4.18 can be solved for any particular iteration step as

✏(i+1)
n = ✏(i)

n + �
X

m

C(i)
nm

⇣
pref
� h p̂mi

(i)
⌘

(4.19)

where the matrix C is the pseudo-inverse of the matrix �, superscript i represents the iter-
ation number, � denotes the damping factor with 0 < � < 1, and ✏(i+1)

n is the well-depth of
the SDK attractive interaction for the next iteration step. Since the susceptibility matrix �
is often singular (with the rank of the matrix being smaller than its size), it is necessary to
define the matrix C as a pseudo-inverse and determine it by using singular-value decom-

position (SVD). By carrying out SVD, the susceptibility matrix is decomposed into three
square matrices U,S and V such that � = USVT where U and V are orthogonal and S is
a diagonal matrix. The pseudo-inverse of the susceptibility matrix via SVD can then be
written as

C = ��1 = V ·
⇥
diag(1/S n)

⇤
· UT (4.20)

Note that in all the cases considered here, �, S ,U and V are square matrices since there is
a one-to-one correspondence between contact probability and interaction strength.

As per the well-established procedure for finding the pseudo-inverse, when S n < 10�4,
1/S n is replaced by 0. In other words, some values in the S matrix whose inverse would
lead to problems, are ignored.

An example of the S matrix obtained in the case of the prototype scenario where
we have considered a bead-spring chain with 45 beads is given here as illustration. The
matrix is of size N(N � 1)/2 ⇥ N(N � 1)/2 = 990 ⇥ 990, which represent the number of
interacting bead-pairs in the chain. Fig. 4.2 represents the matrix at an intermediate stage
in the iteration process. It can been seen that S has diagonal elements whose magnitude
is of order 10�4 or less (top right in Fig 4.2).
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Figure 4.2: Representation of the matrix S. The top right corner along the diagonal represents

diagonal elements of the matrix, S n, which are of order 10�4 or less.

4.3 Validation of the inverse Brownian dynamics
method with a prototype

To validate the IBD method, a prototype of a chromatin-like polymer chain with artifi-
cially set interaction strengths (✏µ⌫) was constructed. The data from this simulated chain
was used to test the IBD algorithm, as described below. The IBD algorithm was validated
for chains of length 10, 25 and 45 beads. Here we discuss the 45 bead chain case as a
prototype. A few bead-pairs (µ⌫) were connected arbitrarily with a prescribed value of the
well-depth ✏(ref)

µ⌫ of the SDK potential. The non-zero reference interaction strengths for the
connected bead-pairs ✏(ref)

µ⌫ are shown in Table 4.1; the remaining pairs were considered
to have no attractive interaction (✏(ref)

µ⌫ = 0). The beads-spring chain was simulated until
it reached equilibrium, which was quantified by computing Rg as a function of time. A
stationary state was observed to be reached after eight Rouse relaxation times [20]. How-
ever, equilibration was continued for fifteen Rouse relaxation times. After equilibration,
an ensemble of 105 polymer configurations was collected from 100 independent trajecto-
ries, from each of which 103 samples were taken at intervals of 103 dimensionless time
steps, which correspond to roughly 2 to 3 Rouse relaxation times. From this ensemble,
the contact probability p(ref)

µ⌫ = hp̂µ⌫i for each bead pair in the chain was computed. Here
p̂µ⌫ is an indicator function which is equal to 1 or 0 depending upon whether the µth and ⌫th
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strengths

beads are within the cut-o↵ distance of SDK potential (r⇤µ⌫  r⇤c) or not (r⇤µ⌫ > r⇤c). The ref-
erence contact probabilities p(ref)

µ⌫ , determined in this manner, are shown in Fig. 4.4(b). In
the present instance while p(ref)

µ⌫ has been constructed by simulating the bead-spring chain
for the given values of ✏(ref)

µ⌫ , in general it refers to the experimental contact probabilities.
The IBD method was then applied to recover the reference contact probabilities p(ref)

µ⌫

starting with an initial guess of a self-avoiding walk where ✏(0)
µ⌫ = 0, i.e., all the interaction

strengths are set equal to zero. The contact probability for the initial state of self-avoiding
walk is shown in Fig. 4.4(c). As illustrated in Fig. 4.1, at each iteration step i, Brownian
dynamics was performed for the given ✏(i)

µ⌫ and an ensemble of 105 conformations were
collected. To quantify the di↵erence between contact probabilities computed from simu-
lation at iteration i (p(i)

µ⌫) and reference contact probabilities (p(ref)
µ⌫ ), the root mean-squared

deviation E(i)
rmsd was calculated

E(i)
rmsd =

s
2

N(N � 1)

X

1µ<⌫N

⇣
p(i)
µ⌫ � p(ref)

µ⌫

⌘2
(4.21)

at each iteration. The error criteria E(i)
rmsd has been used previously in Meluzzi and Arya

[84], and is adopted here. At each iteration i, if the E(i)
rmsd value is greater than the preset

tolerance limit (tol), the interaction strength parameters ✏(i+1)
µ⌫ for the next iteration were

calculated. To avoid the overshoot in interaction strength ✏(i+1)
µ⌫ , the range of ✏(i+1)

µ⌫ was
constrained to [0, 10]. For the investigated polymer chain with 45 beads, the IBD algo-
rithm converges (E(i)

rmsd < tol) in approximately 50 iterations and pref
µ⌫ was recovered. The

error Ermsd for each iteration is shown in Fig. 4.4(a) while the recovered contact proba-
bility matrix is shown in Fig. 4.4(d). The recovered contact probability values along with
the optimized interaction strengths ✏µ⌫ are shown in Table 4.1. The error in the recovered
contact probabilities and interaction strengths is less than 5%, proving the reliability of
the IBD method. The largest contact probabilities are for those bead-pairs for which val-
ues of the interaction strength were chosen a priori, as given in Table 4.1. However, the
existence of these interactions leads to the existence of contact probabilities pµ⌫ between
all bead-pairs µ and ⌫. The IBD algorithm was applied to not just the specified bead-pairs
but to recover all contact probabilities pµ⌫, for all possible pairs. The errors are given in
Table 4.1 only for the specified values since they are the largest. To check the robustness
of the IBD algorithm, the same reference contact probability of the prototype was recov-
ered from an entirely di↵erent initial configuration of a collapsed chain where ✏(0)

µ⌫ = 1 for
all the bead pairs µ and ⌫. The initial contact probability matrix of the collapsed chain is
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Figure 4.3: (a) Root-mean-square deviation Ermsd (Eq. 4.21) as a function of iteration number

showing convergence of the IBD method. (b) Reference contact probability matrix. Two di↵erent

initial states have been considered for testing IBD convergence: (c) initial contact probability for

the self-avoiding walk (SAW) where no bead-pairs have attractive interaction and (d) recovered

contact probability matrix through IBD starting from the SAW state. Similarly (e) initial contact

probability for the collapsed state where all the bead-pairs have attractive interaction, ✏ = 1 and

(f) recovered contact probability matrix through IBD starting with the collapsed state. .
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Table 4.1: Interaction strengths ✏µ⌫ and contact probabilities pµ⌫ for selected bead pairs (µ⌫) in a

bead-spring chain with 45 beads. Values of these variables recovered using IBD are compared with

those of the reference polymer chain, along with the percentage error between the reference and

recovered values. Initial ✏µ⌫ values for all the bead-pairs were chosen to be 0 for the self-avoiding

walk polymer while ✏µ⌫ = 1 for all the bead-pairs in the collapsed polymer.

Initial state: self-avoiding walk polymer

bead-pair
interaction strength, ✏µ⌫ contact probability, pµ⌫

reference recovered % error initial reference recovered % error

3-13 7.00 6.70 4.29 0.0033 0.44 0.46 4.55
13-23 7.00 7.28 4.00 0.0036 0.51 0.49 3.92
23-33 7.00 7.08 1.14 0.0057 0.39 0.37 5.13
33-43 7.00 7.35 5.00 0.0041 0.62 0.59 4.84
8-18 7.00 6.94 0.86 0.0056 0.47 0.47 0.00
18-28 7.00 6.89 1.57 0.0052 0.31 0.32 3.23
28-38 7.00 7.16 2.29 0.0071 0.55 0.53 3.64
3-43 7.00 7.18 2.57 0.0002 0.22 0.22 0.00

Initial state: collapsed polymer

bead-pair
interaction strength, ✏µ⌫ contact probability, pµ⌫

reference recovered % error initial reference recovered % error

3-13 7.00 6.67 4.71 0.139 0.44 0.44 0.00
13-23 7.00 6.99 0.14 0.141 0.51 0.52 1.96
23-33 7.00 6.75 3.57 0.133 0.39 0.38 2.56
33-43 7.00 7.19 2.71 0.136 0.62 0.59 4.84
8-18 7.00 7.22 3.14 0.132 0.47 0.45 4.26
18-28 7.00 6.77 3.29 0.135 0.31 0.3 3.23
28-38 7.00 6.89 1.57 0.133 0.55 0.55 0.00
3-43 7.00 7.11 1.57 0.067 0.22 0.22 0.00
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Figure 4.4: The di↵erence between the reference and recovered contact probability for each bead-

pairs are shown for simulations starting from (d) self-avoiding walk and (e) collapsed state.

shown in Fig. 4.4(e) and the recovered contact probability matrix starting from the col-
lapsed chain is shown in Fig. 4.4(f). The recovered contact probability values along with
the optimized interaction strengths ✏µ⌫ for a few bead-pairs are shown in Table 4.1. Thus
even starting from a very di↵erent configuration, the IBD algorithm converges to the tar-
get contact probability matrix, establishing the robustness of the method (see section S2
for more details). Having validated the IBD algorithm, the next section applies this tech-
nique to experimentally obtained contact probabilities of a chromatin, on the length scale
of a gene.

It is interesting to examine how the polymer chain converges from di↵erent initial
configurations (swollen or collapsed) to the final reference state of the prototype model.
Note that the reference contact probabilities for the prototype model were produced with
the interaction strength ✏µ⌫ = 7 for eight bead-pairs, and with ✏µ⌫ = 0 for all the remaining
982 bead-pairs. On the other hand, we set ✏µ⌫ = 0 for all bead-pairs in the swollen
state, and ✏µ⌫ = 1 for all bead-pairs in the collapsed state. The value of 7 chosen for
the interaction parameter ✏µ⌫ of the 8 bead-pairs in the prototype model has no particular
significance. It has been chosen arbitrarily such that a high contact probability is obtained
between some bead-pairs, as displayed in Fig. 4.4(a). Snapshots of the initial swollen
and collapsed states are shown in Figs. 4.5(a) and 4.5(b), while a snapshot of the final
converged state corresponding to the reference state is shown in Fig. 4.5(c). It is clear
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(a) initial state: swollen (b) initial state: collapsed

(c) reference state (d) radius of gyration

Figure 4.5: Randomly selected snapshots of (a) the swollen (self-avoiding walk) initial state (b)

the collapsed initial state, and (c) the converged reference state. (d) Change in R2
g with the number

of iterations in the IBD algorithm, as the system goes from initial (swollen or collapsed) state to

the final (reference) state.



4.4 Summary 47

that while some beads in the reference state appear tightly bound, most of the others
repel each other. Figure 4.5(d) displays the radius of gyration as a function of number of
iterations in the IBD algorithm, as the system goes from the initial (swollen or collapsed)
state to the final (reference) state. Starting from an initial swollen state, the radius of
gyration decreases monotonically to the final state, defined by the contact probabilities
in Fig. 4.4(a). When the starting state is the collapsed polymer, the radius of gyration
increases monotonically until it reaches the final state. As is clear from the snapshot of
the reference state, since the majority of the bead-pairs have no attraction, the reference
state has a higher radius of gyration than the collapsed state. It is possible that some
“strand passage” occurs in the neighbourhood of the tightly bound beads in the reference
state as the chain conformation evolves from the initial collapsed state (where all the
beads are attracted to each other) to the final reference state with a few tightly bound
beads, since the current algorithm permits such passage (as discussed in section 2.1). The
overall conformational evolution, however, as demonstrated by the radius of gyration in
Fig. 4.5(d), is likely to be dominated by expanding chain conformations since the majority
of the beads repel each other.

4.4 Summary

We have developed a novel IBD method to compute the optimal interaction strength pa-
rameters, given the contact probabilities. We discussed the IBD first in general terms and
then generalised it for a chromatin system. We validated the IBD method for a bead-
spring chain comprising of 45 beads. Starting from two di↵erent initial states of a bead
spring polymer – SAW and collapsed state – the IBD recovers the contact probabilities
and the interaction strengths (within 5% of error), reflecting its reliability. We presented
the recovered contact probability map and the di↵erence between the reference and the
recovered contact probabilities. After this successful implementation of IBD on a proto-
type, we will proceed to estimate the interaction strength parameters for a real chromatin
domain.





Chapter 5

Computing 3D chromatin
configurations from a contact
probability map

In this chapter, we go beyond the prototype and study the 3D organization of real chro-
matin. To do this, the ↵-globin gene locus (ENCODE region ENm008) is chosen for
which Bau et al. [9] have experimentally determined the contact counts using the 5C tech-
nique. This is a 500 kbp long region on human chromosome 16 containing the ↵-globin
gene and a few other genes like LUC7L. Since 5C data does not interrogate the contact
counts between all feasible 10 kbp segment pairs, many elements in the heat map have no
information. This is in contrast with typical Hi-C experiments where information on all
possible contact pairs are obtained. In principle, this method can be applied to Hi-C data;
however, in this instance, we chose the 5C data since it has su�ciently good resolution.
In sec. 5.1, we present the coarse-graining procedure for the experimentally obtained con-
tact probability data from 5C, followed by the normalization procedure for the conversion
of contact counts to contact probabilities in sec. 5.2. We compute the spatial organiza-
tion of ↵-globin gene locus as given in sec. 5.3. We then analysed the relation between
the contact probabilities and the spatial distance between di↵erent chromatin segments in
sec. 5.4. Finally, we compared our findings of spatial distance with the experimental data
and is shown in sec. 5.5.

49
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5.1 The coarse-graining procedure

For simulation purpose, the ↵-globin locus is coarse-grained to a bead-spring chain of
50 beads. That is, the experimental 5C data (contact count matrix of size 70 ⇥ 70) for
the EMn008 region was converted to a contact count matrix of size 50 ⇥ 50. The coarse
graining procedure is as follows: 500kb of the gene locus was divided into 50 beads,
each comprising 10 kb equal-sized fragments. The midpoint of each restriction fragment
was located and was assigned to the corresponding bead in the coarse-grained polymer.
There are cases where two or more restriction fragments (each of size less than 10kbp)
get mapped to the same bead. For example, consider restriction fragments r1 and r2 being
mapped on to a single coarse-grained bead µ, and fragments r3 and r4 being mapped on
to another bead ⌫. The contact counts of the coarse-grained bead-pair Cµ⌫ can then be
computed in at least three di↵erent ways, namely independent, dependent and average

coarse-graining procedures, as described below.

• Independent coarse graining: Take the sum of all contact counts for the four re-
striction fragment combinations (Cµ⌫ = Cr1r3 + Cr1r4 + Cr2r3 + Cr2r4) — i.e., assume
that all contacts occur independently of each other, in other words not more than
one of the contact pairs occurs in the same cell.

• Dependent coarse graining: Take the maximum contact count amongst all the four
restriction fragment combinations (Cµ⌫ = max{Cr1r3 ,Cr1r4 ,Cr2r3 ,Cr2r4}). This as-
sumes that whenever the pairs having small contact counts are in contact, the pair
with the largest contact count is also in contact. These are the two extreme cases
and the reality could be somewhere in between.

• Average coarse graining: The third option is then to choose some such intermediate
value. Here, we use the approximation that the coarse grained contact count is
equal to the average of the two extreme contact counts mentioned earlier, namely
Cµ⌫ = 1

2 [(Cr1r3 +Cr1r4 +Cr2r3 +Cr2r4) +max{Cr1r3 ,Cr1r4 ,Cr2r3 ,Cr2r4}].

5.2 Conversion of contact counts to contact
probabilities: the normalization problem

The contact counts obtained from the Chromosome Conformation Capture experiments
are not normalized. That is, the contact count values can vary from experiment to experi-
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Figure 5.1: Comparison of the reference normalized contact probabilities ((a) and (b)) with the re-

covered contact probabilities ((c) and (d)), obtained with the IBD method for K562 and GM12878,

respectively, at N f = 0. The value of interaction strength parameter ✏µ⌫ for (e) K562 (ON state)

and (f) GM12878 (OFF state) cell lines, respectively, at the converged state.
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ment and total number of contacts are not quantified. This data cannot be compared across
cell lines or across di↵erent experimental sets. While several normalization techniques ex-
ist, the ICE method is one of the more widely used techniques, where through an iterative
process biases are removed and equal “visibility” are provided to each bins/segments of
the polymer. The resulting contact count matrix is a normalized matrix where

P
µCµ⌫ = 1.

While the existing normalization techniques help in removing biases, they still only give
relative contact probabilities and not the absolute values. To accurately predict the dis-
tance between any two segments in chromatin, it is essential to know their absolute contact
probabilities. Since the total number of genome equivalent (number of cells) cannot be
estimated in a chromosome conformation capture experiment, the calculation of absolute
contact probability from the contact count is highly challenging. A simple technique to
normalize these counts is described here. The contact count matrix can be normalized by
imposing the following constraint, namely, that the sum of times any segment pairs (µ⌫)
are in contact (Cc

µ⌫) and the number of times they are not in contact (Cnc
µ⌫) must be equal to

the total number of samples Ns. This is true for all bead-pairs i.e. Cc
µ⌫ + Cnc

µ⌫ = Ns, for all
µ ⌫. Since only Cc

µ⌫ is known, two limiting values of Ns are estimated using the following
scenarios. In one scenario, it is assumed that for the segment pairs (µ⌫) which has the
largest contact count in the matrix, µ and ⌫ are always in contact in all cells. In other
words Cnc

µ⌫ = 0; in this case Ns is simply equal to the largest element of the contact count
matrix. Since this is the smallest value of Ns possible, it is denoted by (Cc

µ⌫)max = Nmin.
The other scenario estimates the sample size from the row µ for which the sum over all
contact counts is the largest i.e., Ns = maximum of (

P
⌫ Cc
µ⌫). This assumes that ⌫ is al-

ways in contact with only one other segment in a cell and there is no situation when it is
not in contact with any segment. This case is denoted as Nmax. However, in a real system,
there might be situations where segment ⌫ is not in contact with any of the remaining seg-
ments. In such a case, Ns could be greater than Nmax. We have investigated this question
in the context of simulations, where we know the exact ensemble size, and can normalize
the contact count matrix with the exact ensemble size, i.e., Ns. From this analysis, it was
observed that there are very few samples where the bead ⌫ is not in contact with any of
the remaining beads. It supports our hypothesis that Nmax could be considered to be the
upper limit in estimating the ensemble size Ns. Since the precise value of Ns is not known
in experiments, Ns is varied as a parameter from Nmin to Nmax. To systematically vary Ns,



5.2 Conversion of contact counts to contact probabilities: the normalization problem53

for convenience, a parameter Nf is defined,

Nf =
Ns � Nmin

Nmax � Nmin
(5.1)

in the range of [0, 1]. Clearly, Nf = 0 implies Ns = Nmin, which is the lower bound for
Ns and Nf = 1 implies Ns = Nmax, which is the upper bound. The contact probabilities at
various Nf values are calculated as pµ⌫ = (Cc

µ⌫/Ns) where Ns = Nmin + Nf (Nmax � Nmin).

For several values of Nf , the contact count matrices are normalized and IBD is car-
ried out to obtain the optimal interaction strengths between the bead-pairs. Fig. 5.1(a)
and 5.1(b) show the normalized contact probabilities at Nf = 0 for cell lines K562 (ON
state) and GM12878 (OFF state), respectively (reference contact probabilities), when they
are coarse-grained to 50 segments of length 10 kbp each, as per the procedure described
above and the corresponding recovered contact probability matrices for both the cell lines
from simulation are shown in Fig. 5.1(c) and 5.1(d). The corresponding optimized inter-
action energies (✏µ⌫) are plotted in Figs. 5.1(e) and 5.1(f). The values range approximately
from 0 to 3kBT . Given that typical contact probability numbers are very small, the opti-
mized energies are just above thermal energy and are comparable to interaction energies
of certain proteins.

5.2.1 ICE normalization

ICED package (http://projects.cbio.mines-paristech.fr/iced) was used to normalize the
contact count matrix of ↵-globin gene locus (both K562 and GM12878 cell line). The
whole matrix was then divided by the summation of the row (summation of each row is a
constant after the ICE normalization) so that the contact probability for each bin sums to
1.

Fig. 5.2(a) and 5.2(b) shows the ICE normalized matrix for K562 (ON state) and
GM12878 (OFF state), respectively. To study the 3D configurations, we performed IBD
on the ICE normalized contact counts matrix. The contact probabilities recovered in
this process are represented in Fig. 5.2(c) and 5.2(d) for K562 and GM12878 cell line.
It is evident from these figures that IBD algorithm has successfully recovered the ICE
normalized contact matrix for both the states.

In order to compare the normalization method introduced in the current work with
the normalization ICE procedure that is commonly used, we have also carried out the
IBD procedure on an ICE normalized matrix. Clearly, the IBD method also recovers the
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Figure 5.2: Comparison of the reference ICE normalized contact probabilities ((a) and (b)) with

the recovered contact probabilities ((c) and (d)), obtained with the IBD method for K562 and

GM12878, respectively.

contact probability matrix obtained with the ICE normalization. As will be discussed in
further detail below, the normalization method has a significant e↵ect on all the structural
properties that have been evaluated in the current work.

5.3 Three-dimensional configuration of the ↵-globin
gene locus

The spatial extent of the chromatin polymer, as quantified by the square radius of gyration
R2
g, for di↵erent values of Nf is presented in Fig. 5.3. In the case of the cell line where the
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Figure 5.3: Spatial extension of the polymer chain, quantified by the radius of gyration, R2
g,

computed at various values of the normalization parameter N f (see Eq. 5.1 for definition), for both

K562 (ON state) and GM12878 (OFF state) cell lines. All three coarse-graining techniques, i.e.,

dependent, independent and average, have been used. The black dashed line represents the value

of R2
g for a chain executing self-avoiding walk statistics. Blue and red lines indicate the Rg for ICE

normalized ON and OFF state, respectively.

gene is ON (K562), the increase in R2
g for small values of Nf is relatively less prominent

and becomes nearly independent of Nf as Nf approaches one. It is clear that contact
probabilities decrease with increasing Nf , since Ns increases with Nf . It is consequently
expected that with su�ciently large Nf , R2

g should approach the value for a self-avoiding
walk. We have simulated a self-avoiding walk using the SDK potential with ✏µ⌫ = 0; this
represents a purely repulsive potential, and the result is shown as a black dashed line in
Fig. 5.3. In the cell line where the gene is OFF (GM12878), the value of R2

g increases
relatively rapidly for small values of Nf and reaches a nearly constant value for Nf & 0.4.
However, the limiting value is significantly smaller than that of a self-avoiding walk.
This suggests that some significant interactions are still present amongst the bead-pairs,
even for Nf approaching one. The influence of the di↵erent coarse-graining procedures
was examined and it was found that the value of R2

g from all the three coarse-graining
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procedures agreed with each other within error bars (as seen from the data at Nf = 0, 0.2
and 0.5, for both the cell lines). This suggests that, at least as far as R2

g is concerned, the
choice of coarse-graining method is not vitally important.

However, the IBD results for ICE-normalized reference contact probability predicts a
very di↵erent value for Rg of the ON state (blue line) and OFF (red line) state. As can
been seen, the R2

g for ON state using ICE normalization is close to the R2
g obtained here for

OFF state at Nf = 0. Interestingly this similarity is observed for many of the properties
considered here, as will be discussed in more detail below.

5.3.1 Shape functions

Since chromatin folded in 3D can have spatial organization that is beyond simple
spherically symmetric packing, various non-globular 3D shape properties have been anal-
ysed here. Eigenvalues of the radius of gyration tensor for polymer chains are usually re-
ported in terms of ratios, either between individual eigenvalues, or with the mean square
radius of gyration. For a chain with a spherically symmetric shape about the centre of
mass, we expect h�2

i i/hR
2
gi = 1/3, for i = 1, 2, 3, and h�2

i i/h�
2
ji = 1 for all combinations

i and j. For chain shapes with tetrahedral or greater symmetry, the asphericity B = 0,
otherwise B > 0. For chain shapes with cylindrical symmetry, the acylindricity C = 0,
otherwise C > 0. With regard to the degree of prolateness, its sign determines whether
chain shapes are preponderantly oblate (S 2 [�0.25, 0]) or prolate (S , 2 [0, 2]). The rela-
tive anisotropy (2), on the other hand, lies between 0 (for spheres) and 1 (for rods).

All these properties are investigated for Nf = 0, 1 and for the ICE normalization, and
compared in the ON and OFF states, as displayed in Table 5.1. It is clear that the while the
chain is highly non-spherical in both states, it appears to be slightly more spherical in the
OFF than in the ON state. The biggest di↵erence is observed at Nf = 0 between ON and
OFF states. As we approach Nf = 1, the di↵erence between ON and OFF states is not so
significant. With ICE, there is not much di↵erence between the two states. As previously
observed with the radius of gyration, ICE values are very close to the OFF state at Nf = 0.

5.3.2 Density profiles

To get a di↵erent prospective on the 3D organization of the gene, the density distribu-
tion about the centre of mass was considered. In order to do this, all polymer configura-
tions were aligned along the major axis of the radius of gyration tensor G and each bead
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Figure 5.4: Comparison of the number density of beads along the major axis of the radius of

gyration tensor, for various values of the normalization parameter N f (see Eq. 5.1 for definition),

(a) ON and OFF states at N f = 0, (b) the OFF state, and (c) the ON state for various values of N f .
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Figure 5.5: Snapshots of 3D configurations, obtained by aligning chains along the major axis

of the radius of gyration tensor and superimposing them on top of each other with transparency.

Configurations at di↵erent values of the normalization parameter N f (see Eq. 5.1 for definition)

are displayed for cell lines K562 and GM12878. The colour assigned to each marker (blue to

yellow) represents the bead number along the contour length (bead 1 to bead 50) of the polymer

chain.
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Table 5.1: Various shape property based on the eigen values of gyration tensor G are defined here

for N f = 0, N f = 1 and ICE normalized contact matrix for K562 (ON state) and GM12878 (OFF

state) cell line.

Shape properties
K562 (ON state) GM12878 (OFF state)

Nf = 0 Nf = 1 ICE Nf = 0 Nf = 1 ICE

h�2
1i/R

2
g 0.058 0.057 0.078 0.081 0.066 0.083

h�2
2i/R

2
g 0.164 0.175 0.189 0.201 0.177 0.195

h�2
3i/R

2
g 0.778 0.768 0.732 0.718 0.757 0.722

h�2
2i/h�

2
1i 2.828 3.054 2.417 2.479 2.703 2.357

h�2
3i/h�

2
1i 13.412 13.422 9.356 8.874 11.563 8.727

B/R2
g 0.667 0.652 0.599 0.578 0.636 0.583

C/R2
g 0.106 0.118 0.111 0.120 0.112 0.112

S 0.913 0.816 0.988 0.772 0.926 0.867

2 0.545 0.513 0.537 0.452 0.525 0.497

position was binned and the number density of beads along the major axis was computed.
As displayed in Fig. 5.4(a), in GM12878 (OFF state) cells, the number density shows a
single peak at the center of mass position suggesting a symmetric organization around the
centre of mass along the major axis. In the case of K562 (ON state) cells, the number
density is seen to have a double peak, implying a bimodal distribution of polymer beads
around the centre of mass along the major axis (Fig. 5.4(a)), as suggested by earlier 3D
models for the ↵-globin gene [9, 99]. With an increase in Nf , a slight decrease in the
number density at the core of the ↵-globin gene in the OFF state is observed (Fig. 5.4(b)),
while a decrease in extent of bimodality is observed in the ON state (Fig. 5.4(c)). How-
ever, the di↵erences for di↵erent Nf values are less prominent at the peripherial regions
of the globule.

We have also compared the density profile corresponding to the ICE-normalized ma-
trix, displayed in Fig. 5.4(a) along with Nf = 0. With the ICE normalization, both states
(ON and OFF) show a single peak at the centre of mass. The bimodal nature of the
ON state is no longer observed. This is a clear prediction that distinguishes the ICE-
normalized result from the other results and can be tested in future experiments.
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5.3.3 3D conformations

To obtain a snapshot of the 3D structure of the ↵-globin gene locus, 1000 di↵erent
configurations from the ensemble were aligned along its major axis and then superim-
posed on top of each other, as displayed in Fig. 5.5, for both the cell lines at di↵erent
values of Nf and with the ICE normalization. Each dot represents a bead and to make
them visible, they have been made transparent to some degree. Di↵erent colors in the plot
represent the bead number along the contour length of the polymer chain. As indicated
from the shape functions and the density profiles, the snapshot shows that the structure is
highly non-spherical in both cases, In particular, the K562 (ON state) cell line chromatin
has a more extended configuration, with slightly higher density away from the centre of
mass. As can be seen in Fig. 5.5, the snapshot for Nf = 0 has some di↵erences with snap-
shots for larger Nf values. The value of Nf was seen earlier to a↵ect average properties
like R2

g (Fig. 4). The snapshots in Fig. 5.5 show a similar behaviour as Rg reflecting the
variation for small Nf and saturation for larger Nf .

5.4 3D spatial distances and contact probabilities

The 3D conformation of the ↵-globin gene locus has been investigated earlier [9, 100].
These studies di↵er from the current work in some important aspects. Firstly, they assume
that the contact counts between any two pairs can be converted to an equilibrium distance
between those pairs through a certain pre-determined functional form. Secondly, instead
of optimizing the interaction strengths to recover the contact counts, their simulations
attempt to recover the equilibrium distances that have been derived from contact matrices.
It is not clear in these cases whether the experimentally observed contact counts will
be recovered by simulations. In this work, no assumptions have been made about the
relationship between spatial distance and contact probability for any pair of beads. On
the contrary in the present case, we can compute the mean spatial distances hrµ⌫i that
are consistent with the contact probability matrix. Further, no configuration from the
ensemble is discarded.

The spatial distances calculated in the current work for the contact probabilities in the
ON and OFF state are shown in Fig. 5.6(a) for K562 (ON state) and in Fig. 5.6(b) for
GM12878 (OFF state) cell lines for Nf = 0. Each point in these figures represents the
ensemble-averaged 3D distance between a given pair of beads (y-axis) having a contact
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Figure 5.6: Dependence of mean 3D distances hrµ⌫i on contact probabilities pµ⌫ for (a) K562

(ON state) and (b) GM12878 (OFF state) cell lines, respectively for N f = 0. For the K562 (ON

state) cell line, the contact probabilities are bounded by power laws, hrµ⌫i / p⌧µ⌫, where ⌧ varies

from �1/20 (upper bound) to �1/4 (lower bound) as indicated by the green and magenta dashed

line. Similarly, in the GM12878 (OFF state), ⌧ varies from �1/12 to �3/10. The red line indicates

the power law fitted to the simulation data points. The black dashed line represent the analytical

relation between the contact probability and a spatial distance for an ideal polymer chain.



62 Computing 3D chromatin configurations from a contact probability map

<latexit sha1_base64="aHqq+BZV4aiEF9vO7ZWhi/HHBEo=">AAACBHicbVDLSsNAFJ34rPUVddnNYBFclUQUXRbduKxgH9CEMJlO26EzkzAPoYQu3Pgrblwo4taPcOffOEmz0NYDFw7n3Mu998Qpo0p73rezsrq2vrFZ2apu7+zu7bsHhx2VGIlJGycskb0YKcKoIG1NNSO9VBLEY0a68eQm97sPRCqaiHs9TUnI0UjQIcVIWylyawFDYsQIlFEWcBMIM4OBLKRq5Na9hlcALhO/JHVQohW5X8EgwYYToTFDSvV9L9VhhqSmmJFZNTCKpAhP0Ij0LRWIExVmxRMzeGKVARwm0pbQsFB/T2SIKzXlse3kSI/VopeL/3l9o4dXYUZFajQReL5oaBjUCcwTgQMqCdZsagnCktpbIR4jibC2ueUh+IsvL5POWcO/aHh35/XmdRlHBdTAMTgFPrgETXALWqANMHgEz+AVvDlPzovz7nzMW1eccuYI/IHz+QNs6Jfx</latexit> �r
µ

�
�

(a)

<latexit sha1_base64="aHqq+BZV4aiEF9vO7ZWhi/HHBEo=">AAACBHicbVDLSsNAFJ34rPUVddnNYBFclUQUXRbduKxgH9CEMJlO26EzkzAPoYQu3Pgrblwo4taPcOffOEmz0NYDFw7n3Mu998Qpo0p73rezsrq2vrFZ2apu7+zu7bsHhx2VGIlJGycskb0YKcKoIG1NNSO9VBLEY0a68eQm97sPRCqaiHs9TUnI0UjQIcVIWylyawFDYsQIlFEWcBMIM4OBLKRq5Na9hlcALhO/JHVQohW5X8EgwYYToTFDSvV9L9VhhqSmmJFZNTCKpAhP0Ij0LRWIExVmxRMzeGKVARwm0pbQsFB/T2SIKzXlse3kSI/VopeL/3l9o4dXYUZFajQReL5oaBjUCcwTgQMqCdZsagnCktpbIR4jibC2ueUh+IsvL5POWcO/aHh35/XmdRlHBdTAMTgFPrgETXALWqANMHgEz+AVvDlPzovz7nzMW1eccuYI/IHz+QNs6Jfx</latexit> �r
µ

�
�

(b)

Figure 5.7: Violin plots which display the probability distribution of mean 3D distances for

selected ranges of contact probabilities in (a) the K562 (ON state) cell lines, and (b) the GM12878

(OFF state) cell lines for N f = 0.
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Figure 5.8: Dependence of mean 3D distances hrµ⌫i on contact probabilities pµ⌫ for (a) K562

(ON state) and (b) GM12878 (OFF state) cell lines, respectively at N f = 1. For the K562 (ON

state) cell line, the contact probabilities are bounded by power laws, hrµ⌫i / p⌧µ⌫, where ⌧ varies

from �1/20 (upper bound) to �1/4 (lower bound) as indicated by the green and magenta dashed

line. Similarly, in the GM12878 (OFF state), ⌧ varies from �1/12 to �3/10. The red line is fitted

to the data points.
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Figure 5.9: Violin plots showing the probability distribution of mean 3D distances for selected

ranges of contact probabilities in (a) the K562 (ON state) cell lines, and (b) the GM12878 (OFF

state) at normalization factor N f = 1.
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Figure 5.10: Dependence of mean 3D distances hrµ⌫i on contact probabilities pµ⌫ for (a) K562

(ON state) and (b) GM12878 (OFF state) cell lines, respectively for ICE normalization. For the

K562 (ON state) cell line, the contact probabilities are bounded by power laws, hrµ⌫i / p⌧µ⌫, where

⌧ varies from �1/20 (upper bound) to �1/4 (lower bound) as indicated by the green and magenta

dashed line. Similarly, in the GM12878 (OFF state), ⌧ varies from �1/12 to �3/10. The red line

indicates the power law fitted to the simulation data points.
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(a)

(b)

Figure 5.11: Violin plots which display the probability distribution of mean 3D distances for

selected ranges of contact probabilities in (a) the K562 (ON state) cell lines, and (b) the GM12878

(OFF state) cell lines normalized with ICE.
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probability as indicated in the x-axis. As is immediately apparent, a wide range of 3D
distances is possible, unlike what was assumed in earlier studies. It appears that the
average 3D distance is not just a function of contact probability pµ⌫ (where the interaction
between the beads plays a role), but is also a function of the distance along the contour
between the beads (|µ � ⌫|) – the color variation in Figs. 5.6(a) and (b) indicates the
influence of contour length. The red line in both the figures are fitted power-laws to the
dataİn both cases, the exponents are close to �1/4. But the interesting element here is
the variability (scatter) in the data which shows that for a given contact probability value,
there can be multiple values of 3D distances, with deviation of many units.

To understand this variability better, we bin the same data and plot it as violin plots that
display the mean 3D distance for a given small range of contact probabilities, as shown
in Figs. 5.7 (a) and (b). It is clear that the distribution of points around the mean is very
diverse – bimodal in a few cases and with an extended tail in many cases – suggesting that
a simple functional form between the mean 3D distance and the contact probability may
not be feasible. It must be reiterated here that many previous studies have assumed power
law relations such as rµ⌫ / p⌧µ⌫ can be used, with exponents ⌧ = �1 [47, 38] and ⌧ = �1/2
[108], independent of |µ � ⌫|. Some groups have also assumed exponential [132] and
logarithmic decay of distance with probability [9]. As shown above, the results reported
here do not support the usage of such simple functional forms. However, for an ideal
chain, we know that contact probability p / s�3/2 and the average 3D distance scales
as r / s1/2 where s is the contour length between any two polymer beads. Combining
these two, we get r / p�1/3. This is shown by the black dashed line in Fig. 5.6. Clearly,
the relation between mean 3D distance and the contact probability is significantly more
complex than for a simple ideal chain. The relationship and its variability for Nf = 1
and ICE normalization are in Fig 5.8 to 5.11 respectively. In these instances as well, the
mean 3D distance is observed to be a function of both the contact probability and contour
distance |µ � ⌫|.

The spatial distances calculated for the ICE normalised contact probabilities in the
ON and OFF state are shown in Fig. 5.10(a) for K562 (ON state) and in Fig. 5.10(b) for
GM12878 (OFF state) cell lines. Similar to the Nf = 0 case, a wide range of 3D distances
is possible and is also dependent on the distance along the contour between the beads (|µ�
⌫|). The same data has been binned and plotted as violin plots that display the mean 3D
distance for a given small range of contact probabilities, as shown in Figs. 5.11 (a) and (b).
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This distribution is observed to be very di↵erent from the other simple normalization
studied in the present thesis.

5.5 Comparison with experimental observations

To establish a connection between our simulations and experiments, we computed the
average 3D spatial distance (r⇤µ⌫ = |r⇤µ�r⇤⌫|) between di↵erent pairs of chromatin segments
as a function of the corresponding 1D genomic separation (sµ⌫ = |µ � ⌫|). As shown
in Fig. 5.12, hr⇤µ⌫i ⇠ s⌫µ⌫ with ⌫ = 0.38 in the OFF state, suggesting near close packing
within the chromatin domain (red symbols). As a “control”, we also simulated a self-
avoiding walk (SAW) polymer with no crosslinking (✏µ⌫ = 0) which results in ⌫ = 0.6
as expected (black symbols) [21]. Our chromatin model predicts a spread (variability) in
the 3D distance (red symbols) which is absent in the control revealing the implications
of heterogeneous intra-chromatin interactions. A recent microscopy study [129] on a
mouse ESC chromatin domain also showed a similar behavior – both the scaling (slope)
and the variability in the experimental and simulation data are comparable without any
fitting parameter. This is a validation that macroscopic polymer properties of chromatin
domain in our simulation accurately represent what is observed in realistic systems. The
y-intercept of the experimental data gives us the size (� = lH) of the 10kb chromatin
(a single bead in our simulation). For this experimental system (mouse chromosome 6,
1.2MB in Szabo et al. [129]) we get lH = 22nm. Even though we do not have such
extensive spatial distance data for ↵ globin, we compared the available FISH data for ↵
globin and deduced the lH = 36nm (see Appendix A.2). Throughout this paper, lH =

36nm and �H = 0.1s are used to convert all non-dimensional lengths and times into
standard units and we will present quantities in both units. The reasons for the choice
of both these specific values are discussed in greater detail in the Appendix A.2.

5.6 Role of adjacent fragments

In our simulation of the ↵-globin gene locus, we modeled only the chromatin segment
representing the locus and not the whole chromosome. It is worthwhile studying the
changes in 3D configurations due to chromatin segments attached at both the ends of the
domain. In this context, one can ask the following questions: Do the domain structure
and properties remain una↵ected by the chromatin segments on both sides or is there is
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Figure 5.12: Average 3D distances between all bead-pairs as a function of corresponding genomic

distances for the control simulations (SAW, black symbols), chromatin domain that we simulated

(red symbols) and comparison with experimental data from [129] (blue symbols). The major axes

(lower x and left y) represent quantities in dimensionless units (see methods) while the other axes

(upper x and right y) represent the same in standard units.
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a drastic change due to the attached fragments at the ends? To probe this, one can add
short chain segments to both the ends of the domain. These short chains could be either a
simple polymer with steric hinderance (SAW) or a collapsed chain. An ideal study would
consider all possible combinations of SAW and collapse chains at the ends, which would
be:

1. SAW chains on both ends of the ↵-globin domain.

2. A SAW chain on one side and a collapsed chain on the other.

3. Collapsed chains on both sides.

In our study we have considered only the first scenario of a SAW chain of 30 beads
attached to both ends of the domain. The interaction of the middle portion of the chain
representing the ↵-globin domain remains the same. We performed Brownian dynamics
on a 110 beads chain for both cell lines, ON and OFF states. The interaction strength
parameters used for this simulation are the ones recovered from the IBD for 50 beads
chain. We equilibrated the chain for 8 Rouse relaxation times and sampled at every 1000
time steps. A total of 105 samples were collected.

Fig. 5.13(a) and (b) show the contact probability obtained from simulation for OFF
and ON state of the elongated chain (N = 110), respectively. As seen in Fig. 5.13(a),
significant contacts are only present at the interior of the chain. This region accounts
for the interaction of the OFF state of ↵-globin gene locus. As expected from the SAW
polymer, end portion of the chains are devoid of any significant far away contacts. Only
neighbouring beads are observed to be in contact. A similar pattern is seen for the ON
state of elongated chain (see Fig. 5.13(b)), where most of the significant contact is for the
middle portion of the chain, corresponding to the ON state of ↵-globin gene locus.

We then looked at the size of the elongated polymer chain. Fig, 5.14 shows the radius
of gyration (Rg) in the two cases of elongated chains and compared with our earlier results.
This shows that indeed with the addition of chains on both side, the Rg of the polymer
increases in both the ON and OFF states. We then investigated the e↵ect of chains at the
end on the density profile. Fig. 5.15 shows the plot for the density profile. In the OFF
state (red symbols in Fig. 5.15), with the addition of chain at the end, we observe the
decrease in peak as increase in the spread (standard deviation of the curve). Both curves
show a single peak. In the ON state (blue symbols in Fig. 5.15), the nature of the curve
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(a)

(b)

Figure 5.13: Contact probability matrix for the 110 beads long chain where the middle portion

(bead 31-80) represent the ↵-globin gene locus (a) for the OFF (GM12878) state and (b) for the

ON (K562) state.
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Figure 5.14: Comparison between Rg of the previous 50 beads chain and the elongated 110 beads

chain. The Rg of the polymer increases with the addition of extra piece of chain on both sides.
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Figure 5.15: Density profile for 50 beads chain and the elongated 110 beads chain for the ON

(K562) and OFF (GM12878) state.
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(a) (b)

(c) (d)

Figure 5.16: (a) & (b) Randomly chosen configuration for the OFF (GM12878) state. It can be

observed that the middle portion of the chain remains in the collapsed state, while the ends stay in

open configuration. (c) & (d) Randomly chosen configuration for the ON (K562) state. As seen

earlier in this thesis, ON state is close to the SAW state, the whole polymer seems to exist in open

configuration.
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in both the cases (N = 50 and N = 110) remains the same. Both show a double peak in
density profile. Similar to the OFF state, here also, we observe the decrease in height and
increase in the spread of the density profile for the elongated chain. This observation is
consistent with the observation in Rg. To understand the configurations of the elongated
chain, we looked at some of the random configurations as shown in Fig. 5.16. In the OFF
state, we observe the bead clustering for the middle portion of the chain only, while the
segments of the chain at the ends remains in open state. For the ON state, we observe the
whole chain in an open configuration. This is consistent with our earlier observation that
ON state is close to the SAW and exists in an open configuration.

5.7 Summary

In the present chapeter, the 3-dimensional organisation of chromatin based on publicly
available chromatin conformation capture experimental data is investigated using the IBD
method. We used three coarse-graining procedures – independent, dependent and average

were used to map between the experimental and coarse-grained contact matrices. For the
gene locus studied in this work (↵-globin gene), no significant di↵erences between the
three cases was observed both for the gene extension and density profile. A procedure for
normalizing the contact count matrix was introduced with a parameter Nf varying from
0 to 1 between two di↵erent scenario for the sample size. For GM12878 (OFF state),
the gene extension rapidly increases initially. while for K562 (ON state), on the other
hand, is already in the extended form, it has a very small scope of further extension with
increase in the normalization. Since there is relationship between the normalization factor
Nf and the physically measured properties such as the radius of gyration, It is conceivable
that the Nf can be estimated from experiments such as FISH, Chip-seq. The structural
properties of the ↵-globin gene locus were investigated in terms of shape function, density
distribution and 3D snapshots. In K562 (ON state), alpha-globin lacks any prominent
interaction and exists in an extended structure. Whereas in the case of GM12878 (OFF
state), the gene is in a folded state. This is also consistent with the theory, as in ON state,
the transcription factors need to access the gene in ON state (K562) while the structural
status of OFF state (GM12878) should be avert the transcription factor resulting in gene
silencing. The density profile along the major axis also supports the extended structure
in cell line K562 (ON state) and a sharpe cluster of monomers at the core of GM12878
(OFF state). The dependency of spatial distance on contact probability is also investigated
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here showing a broad distribution. Finally, we compared our prediction of spatial distance
between chromatin segments with the published experimental distance data. The scaling
and variability of our prediction is in agreement with the experimental data without any
fitting parameter.





Chapter 6

Fluctuations and dynamics of a
chromatin domain

So far, we have studied the 3-dimensional configurations and static properties of a chro-
matin domain. While these domains are often imagined as static structures, they are
highly dynamic and show cell-to-cell variability. Since processes such as gene regulation
and DNA replication occur in the context of these domains, it is important to understand
not only their organization but fluctuation and dynamics as well. In this chapter, we go
beyond the average static properties and compute the fluctuations of chromatin segments
and their folding dynamics. In sec. 6.1, we examine the full distance distribution between
di↵erent pairs of segments. To investigate the epigenetic e↵ect, we altered the interaction
strength and studied the size and shape changes in sec. 6.2. We then study the dynam-
ics of the domain, compute relaxation times, sti↵ness and viscous drag experienced by
the domain in sec 6.3. In sec. 6.4, we computed the loop formation times and contact
times between di↵erent segments of chromatin. The probability distribution of temporal
quantities is provided in sec. 6.5, followed by the summary of our findings.

6.1 Distance distributions and cooperative nature of
chromatin folding

Even though the average distance between two chromatin segments is often used to rep-
resent chromatin organization, this may not describe the accurate biological picture in a
dynamic, heterogeneous context. We compute the distribution of 3D distance between dif-
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Figure 6.1: Distance probability distribution p(r⇤µ⌫) from simulations compared with the analytical

expression [32] for a pair of beads 9 and 34 of a SAW polymer.

ferent segments, p(r⇤), as it captures the maximum information about variability and fluc-
tuations of chromatin. As a control, we computed the p(r⇤) for a SAW and it agrees well
with the known analytical expression of des Cloizeaux, p(r⇤) = C(r⇤)✓+2e�(Kr⇤)1/(1�⌫) [32].
Here ⌫ is the Flory exponent, ✓ is a geometrical exponent and the coe�cients C and K

are functions of ✓ [32]. Recent work has led to an accurate estimation for these constant
which are discussed in Appendix A.3. Fig. 6.1 shows the validation with intermediate
beads of a SAW (with ⌫ = 0.6, ✓ = 0.81,K = 1.17,C = 2.05).

We then studied the p(r⇤) for the ↵-globin gene locus in GM12878 cell type. Exam-
ining various segments 250kb apart along the chain backbone (25 beads), we find that all
the distributions have a broad peak near their respective average distances (Fig. 6.2(a)).
However, for bead pairs having high ✏ values, a sharp peak emerges near r⇤ ⇡ rc — we
call this an “attraction-driven peak” as it is within the attractive range of the potential. The
height of the peak is correlated with the strength of attraction (✏). However, the average
distances (vertical lines in Fig. 6.2(a)) appear independent of ✏µ⌫. This di↵erence is also
reflected in the cumulative distribution function as shown in Fig. 6.2(b). Together, these
results imply that average distances between bead-pairs may not represent the complete
picture of chromatin organisation; understanding the whole distribution is necessary.
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Figure 6.2: (a) p(r⇤µ⌫) for various bead pairs with di↵erent ✏µ⌫, but same sµ⌫ = 25 in the OFF state

of ↵-globin gene. The interaction-driven peak is highlighted in the inset. Vertical dashed lines

represent hr⇤µ⌫i corresponding to each distribution. (b) Cumulative distance distribution C(r⇤µ⌫) for

various bead-pair with the same genomic separation sµ⌫ = 25 in the OFF state of ↵-globin gene in

log-log scale. The same is indicated in linear scale in the inset.
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Figure 6.3: (a) The interaction strength obtained form the IBD for GM12878 ↵-globin gene. (b)

A subset of (a) where only the interaction strengths greater than 1kBT are considered. (c) A subset

of (a) where the interaction strengths greater than 2kBT are considered.
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Figure 6.4: (a) Comparison of p(r⇤µ⌫) between di↵erent “epigenetic states”. OFF: state with all

WT interactions in GM12878 (red), OFF GT1: when weak interactions are ignored; only with

✏µ⌫ > 1kBT interactions (pink), OFF GT2: when only very high interactions (✏µ⌫ > 2kBT ) are

accounted (blue), SAW: control simulation with no crosslinking (black). Vertical dashed lines

represent hr⇤µ⌫i corresponding to each distribution. (b) Comparison of C(r⇤µ⌫) for the chromatin

domain under di↵erent epigenetic states.
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Given that we have the optimal interaction strengths that satisfy the experimentally
known contact probability constraints [74], we can answer the following important ques-
tion: Are the measurable properties of a given bead-pair (e.g. r5,30) solely determined
by the interaction between those two particular beads (✏5,30) or are they influenced by
the interactions among other bead-pairs as well? To answer this, we adopted the follow-
ing strategy: we systematically switched o↵ the attractive interaction among certain bead
pairs and computed probability distributions and other polymer properties. We simulated
polymers for the following four cases: (i) all interactions are considered – GM12878
(OFF), as shown in Fig. 6.3(a), (ii) only those interactions above 1kBT are considered –
we call it OFF:GT1 – all weak interactions (< 1kBT ) are switched o↵ here (as shown in
Fig. 6.3(b)), (iii) only strong interactions above 2kBT are considered – OFF:GT2 – all
weak and medium interactions (< 2kBT ) are switched o↵ (as shown in Fig. 6.3(c)), (iv)
all attractive interactions are switched o↵ – the SAW polymer. These four cases can be
cosidered as four di↵erent epigenetic states – states having di↵erent interaction strengths
due to underlying epigenetic variations. Fig. 6.4(a) shows p(r5,30) for all the four cases.
When we switch o↵ the weak interactions below 1kBT (OFF:GT1), compared to the OFF
state, the height of the interaction-driven peak of the distribution decreases and overall
the polymer swells resulting in the shift of the second peak (compare pink and red curves
in Fig. 6.4(a)). This implies that weak interactions having strengths comparable to ther-
mal fluctuations can also influence the contact probability and polymer configurations. If
we keep only the highly prominent interactions and neglect all interactions below 2kBT

(OFF:GT2), the interaction-driven peak further diminishes and the distribution function
approaches the SAW distribution (compare blue with other curves in Fig. 6.4(a)). Note
that the interaction between beads 5 and 30 is present (✏5,30 = 2.09) in all the cases except
in the SAW case. The same behaviour can be observed in the cumulative plot as shown
in Fig. 6.4(b). These results suggest that the measurable properties for a given bead-pair
(e.g. r5,30) depends not only on the attraction strength of that particular bead pair but also
on the interactions of the whole polymer chain. This result implies that all bead-pairs
collectively/cooperativily contribute in determining the relative position for a particular
bead-pair.
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6.2 Epigenetic changes alter the volume and shape of
the chromatin domains

The above picture suggests that the chromatin folding is influenced by collective behav-
ior of all beads having di↵erent interaction strengths. To examine the nature of collec-
tive behavior, we probed a property of the whole polymer namely the radius of gyration
(Rg). To understand how folding is a↵ected by di↵erent epigenetic states, we did the
following. We started with a polymer having no interactions (SAW), added weak inter-
actions (small ✏) that exist between beads in the OFF state as the first step, equilibrated,
computed Rg and sequentially added stronger interactions between beads step by step
(✏ < 0.5, ✏ < 1.0, ..., ✏ < 2 and so on, denoted as LT1, LT2 etc), until the OFF state
(GM12878) is reached. Each step was equilibrated and Rg was computed (see Fig:6.5,
top panel). From Rg, we have also computed the volume V = (4/3)⇡R3

g of the chromatin
domain as shown in the right side y-axis. As seen from the figure, adding very weak
interactions does not change the Rg much. However, adding intermediate interactions
significantly reduces the Rg and it saturates as the interactions gets stronger, resulting in
a sigmoidal-like curve showing signatures of cooperative/collective behavior. Since, we
have equilibrated the polymer for each set of ✏ values, the LHS of the curve can be in-
terpreted in two ways: folding the polymer by adding stronger and stronger interaction
starting with a completely unfolded state or equivalently unfolding the polymer by re-
moving the stronger interaction starting with a completely folded OFF state. One can also
ask how the polymer would fold if one adds strong interactions (larger ✏) as the first step,
starting with SAW, and then add weaker interaction sequentially step by step (denoted as
GT1, GT2 etc). This is shown in the RHS of Fig. 6.5 (blue symbols). The whole curve
suggests that having prominent interactions alone or weaker interactions alone may not
take the system closer to its full equilibrium state. We also show typical snapshots of 3D
chromatin configurations corresponding to di↵erent epigenetic states. As expected, the
OFF state is compact and the volume of the domain increases as we go towards the SAW
state. The fold-change in volume we observe between the two extreme states are roughly
the same order as the density change observed experimentally [65].

To quantify how the shape of the chromatin domain changes with epigenetic states,
we computed the asphericity (B) and the acylindricity (C) parameters (see Chapter 2 for
definition). Asphericity quantifies the extent of deviation from a spherical shape. If a
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Figure 6.5: Interaction strengths determining shape properties of chromatin domain: Upper

panel: Size of the chromatin domain (Rg) as we perturb interaction strengths. x-axis represents

di↵erent interaction states with extreme ends representing the control (SAW) polymer and the

OFF state (WT) in the middle. LT1 (LTx) indicates that all interactions below 1kBT (xkBT ) are

present in the polymer. Similarly GT1 (GTx) indicates that all interactions above 1kBT (xkBT ) are

present. The right y-axis indicates volume of the chromatin domain in femtolitre. Snapshots from

simulations at various epigenetic states are shown around the perimeter of the graph. Bottom two

panels represent the normalized asphericity (B/R2
g) and acylindricity (C/R2

g), respectively. The

x-axis is the same in all panels.
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Figure 6.6: (a) and (b) represent the asphericity and acylindricity, respectively. x-axis represents

di↵erent interaction states with extreme ends representing the control (SAW) polymer and the OFF

state (WT) in the middle. LT1 (LTx) indicate that all interactions below 1kBT (xkBT )are present

in the polymer. Similarly GT1 (GTx) indicate that all interactions above 1kBT (xkBT ) are present.

polymer is coiled with the average shape of a sphere, B = 0. Here a positive B value sug-
gests that even in the OFF state, the chromatin domain is not a perfect sphere. As we go
from OFF to SAW, the asphericity increases by ⇡65% as shown in Fig. 6.6. However, the
asphericity scaled with the polymer size (B/R2

g) changes by ⇡10%. Similar to Rg, we have
shown the GT (RHS, orange symbols) and LT (LHS, blue symbols) cases for the aspheric-
ity too. Even though both sides are monotonically increasing, note that LT cases are not
equivalent to the GT cases. We also compute the acylindricity parameter that quantifies
the extent of the deviation from a perfect cylinder. Here too, C > 0 values suggest that the
chromatin domain is not a perfect cylinder (see the lower panel of Fig. 6.5 and Fig. 6.6).
Even though the acylindricity is monotonically increasing (shown in Fig. 6.6) from the
OFF state to a SAW, it is increasing in proportion to the size of the polymer. Hence the
scaled acylindricity (C/R2

g) is nearly a constant as shown in the lower panel of Fig. 6.5.
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6.3 Estimation of solid-like (sti↵ness) and liquid-like
(drag) properties from domain relaxation times
and fluctuations

Whether chromatin is liquid-like, solid-like or gel-like has been a matter of intense discus-
sion in the recent literature [82, 93, 55, 128]. In the phase separation picture, chromatin
segments are thought to be “liquid-like”, dynamically exploring various configurations.
Given that our model can study the stochastic nature of formation and breakage of bonds,
and polymer dynamics, consistent with what is observed in Hi-C experiments, below we
compute relaxation times and fluctuations of the chromatin domain and estimate e↵ective
elastic and drag properties.

First, we computed the end-to-end autocorrelation function
D
R⇤E(0) · R⇤E(t⇤)

E
/
D
R⇤2E (0)

E

where R⇤E = |r⇤1 � r⇤50| and extracted the longest relaxation time ⌧⇤ with and without HI.
The autocorrelation decay computed with HI is shown in Fig. 6.7(a) and no-HI case
is shown in Fig. 6.7(b). Fig. 6.8(b) shows that the relaxation times for all the epige-
netic states are lower with HI, as observed previously for the protein folding simula-
tions [102, 103]. All results presented in this thesis are computed with HI, unless stated
otherwise. The chromatin in the OFF state has a lower relaxation time compared to a
crosslinking-free chromatin (SAW). This can be counter-intuitive as one would naively
expect that the more the crosslinking the slower the chromatin will relax. A similar puz-
zle has also been observed in recent experiments [54, 93] where the repressed chromatin
domain di↵uses faster than the active one. To understand this apparent contradiction, we
investigate the elastic and drag properties of the chromatin domain. From the measure-
ment of fluctuations of each bead-pair we can compute an e↵ective sti↵ness defined as
Kµ⌫ = kBT/h|rµ � r⌫|2i (Fig. 6.9(a)). As expected, highly cross-linked OFF state is more
sti↵ than the other epigenetic states including SAW. This can also be understood from
the free energy as a function of bead pair distance F⇤(r⇤) = � ln (p(r⇤)/4⇡r⇤2) (see inset).

The above behaviour is consistent with K⇤µ⌫ ⇠
@2F⇤µ⌫
@r2
µ⌫

and sti↵ness (K⇤µ⌫) of di↵erent epi-

genetic states do show similar behaviour. For the known sti↵ness and relaxation times,
we can compute an e↵ective drag coe�cient defined as ⇣⇤e↵ = ⌧

⇤
⇥ K⇤. Taking the e↵ec-

tive sti↵ness of the end beads (K⇤1,50), we find that the drag for the OFF state is higher
than the other states suggesting that higher cross-linking reduces its ability to reorganize
(see Fig. 6.9(b)). Both the sti↵ness and drag are greater for the OFF state than the SAW,
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Figure 6.7: Exponential decay of end-to-end auto-correlation function with time for four epige-

netic states computed (a) with HI and (b) without HI.
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Figure 6.8: Relaxation times (⌧) with and without HI reveal that HI helps in relaxing the polymer

faster.

but they combine to lead to a faster relaxation time for the OFF state. Our findings agree
with the recent experimental report that crosslinked chromatin shows less FRAP revealing
gel-like nature of chromatin [128, 55].

6.4 Interplay between interaction energy and
polymer entropy influences the dynamics of
chromatin domain

While we gained insights into steady state fluctuations and distance distributions, how
the interactions would a↵ect chromatin dynamics can be further probed. We know that
contacts between chromatin segments are dynamic; proteins that form contacts bind and
dissociate resulting in stochastic formation and breakage of contacts. This opens up in-
teresting questions: How long do two beads remain in contact (looped)? When loops
break and beads di↵use away, how long does it take for the bead pairs to come back in
contact? What are the factors (interaction strengths, polymer entropy etc.) dictating the
phenomena of dynamic contacts?

To study the temporal nature of chromatin, we define loop formation time (t⇤L) and
contact time (t⇤C) for all bead-pairs. t⇤L is defined as the time taken for a pair of beads
to meet (r⇤µ⌫ < r⇤C) for the first time, starting from a random equilibrium configuration.
t⇤C is defined as the duration that the bead-pairs remain looped/in contact. A schematic
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Figure 6.9: (a) E↵ective sti↵ness between all the bead-pairs; OFF state is more sti↵ compared

to less interacting states and SAW. Inset: Free energy as a function of bead pair distance r5,30.

(b) E↵ective viscous drag felt by di↵erent chromatin states. OFF state chromatin (with stronger

interactions) is more sti↵ and has a higher viscous drag.
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Figure 6.10: schematic representation of the distance between two beads in a single trajectory

showing t⇤L and t⇤c.
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Figure 6.11: Distance data from our simulation for a particular pair of beads for a three randomly

chosen realisation.
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Figure 6.12: (a) ht⇤Li has a power law scaling with genomic length (ht⇤Li ⇠ sµ) with exponent

varying from 1.4 (OFF state) to 2.3 (SAW) for di↵erent chromatin states. The exponents are

shown in lower inset. The upper inset shows ht⇤Li for various N values for a random walk polymer.

(b) ht⇤Li as a function of interaction strength with each point representing a bead pair. Note the

huge spread in ht⇤Li. Inset: ht⇤Li binned and averaged over all bead pairs having same ✏ showing

minimal influence of ✏.
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Figure 6.13: (a) ht⇤Ci as a function of s with each point representing a bead pair. Here too, note the

spread. Inset: ht⇤Ci binned and averaged over all bead pairs having the same s showing minimal

dependence on the segment length. (b) ht⇤Ci increases exponentially with the interaction strength.
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Figure 6.14: ht⇤Li for all the bead pairs as a heatmap for (a) OFF and (b) SAW states.
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representation of a typical time trajectory of 3D distance indicating t⇤L and t⇤C is shown in
Fig. 6.10 and the actual data from our simulation, as an example, is shown in Fig. 6.11.
Corresponding average quantities are defined by ht⇤Li and ht⇤Ci, respectively.

Two possible factors that can influence these temporal quantities are interaction strengths
(✏) and polymer entropy. Since two beads having a larger segment length between them
will have a higher entropy, it is expected that the time to come into contact is longer.
In other words, the time of looping is expected to be dictated by polymer entropy. To
validate this hypothesis, we looked at ht⇤Li as a function of the genomic length with and
without HI.

As shown in Fig. 6.12(a) ht⇤Li monotonically increases with s showing a power law
behavior ht⇤Li ⇠ sµ. As a control, we matched our ht⇤Li results with the previously known
exponents µ ⇡ 2.3 for SAW and µ = 2.0 for a random polymer (see top inset) [135]. By
simulating various chain lengths (N = 10, 20, ...) we can infer that the deviation from the
power law for large s is due to finite chain e↵ects (top inset). We have also computed
ht⇤Li for all the other epigenetic states revealing 2.3 < µ  1.4. The OFF state having
all interactions shows the smallest exponent of 1.4. As we remove interactions from the
system, µ gradually approaches the SAW limit. The change in power law may also be
understood by looking at the free energy plotted in Fig. 6.9(c) inset. One can see that
the free energy has a higher tilt in the OFF state compared to the other states, implying
that the bead-pairs can move along the landscape quicker in the OFF state. The results
for ht⇤Li suggests that even in the absence of loop extrusion, the looping time is not too
long (seconds to minutes). This also indicates that the micro phase-separation could be
a viable mechanism for bringing together chromatin segments and possibly explains the
experimentally observed fact that chromatin is functional even in the absence of loop
extruding factors [13, 18, 69]. We then examined how the interaction strength influences
ht⇤Li, and found that there is a huge spread in the ht⇤Li values, for a given ✏ (Fig. 6.12(b)),
with the average showing a mild dependence on ✏ (inset).

Interestingly the values of ht⇤Ci are nearly independent of genomic separation (Fig. 6.13(a)).
Here too there is a huge variability among di↵erent bead pairs with the inset showing the
behaviour when the segment length is averaged over all pairs having the same s. However,
the interaction strength significantly alters the ht⇤Ci (Fig. 6.13(b)) showing an exponential
increase. This suggests that the ht⇤Li is determined by the interplay between entropy (re-
sulting from genomic separation) and energy (interaction strength). Once bead-pairs come
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in contact ht⇤Ci is dominated by the interaction strength.

For the OFF and SAW states, we also show ht⇤Li between all pairs of beads as a heatmap
(see Fig. 6.14(a) & (b)). One can quickly note that the range of SAW time scales is much
higher than that of the OFF state. This is the consequence of higher µ for the SAW
compared to the OFF state. In the SAW, one can observe that the times are similar for all
points having the same distance away from the diagonal (a line parallel to diagonal axis),
suggesting that what matters in this case is the inter bead distance (s). In contrast, in
the OFF state, there is a heterogeneity and curvy color contours suggesting that the time
values are not just a function of segment length alone but also the identity (interaction
strength) of the individual bead pairs. This once again points to the interplay between
entropy and energy. The phase-space exploration of a specific bead-pair in a bead-spring
chain can be imagined as a single bead moving in an e↵ective potential energy landscape
given by the free energy F⇤(r⇤) = � ln (p(r⇤)/4⇡r⇤2) as a function of the 3D distance (r⇤)
between the corresponding bead-pair. Details on this is provided in Appendix A.4.

6.5 Nature of loop formation and contact time
distributions

So far we have studied the average loop formation times and contact times; however,
should one assume that the average values describe these quantities completely? To
answer this, similar to p(r⇤), here we have investigated the nature of the distribution
of the temporal quantities. In Fig. 6.15(a) and (b), we present the probability distribu-
tions of contact (p(t⇤C)) and loop formation (p(t⇤L)) times, respectively. We observe that
p(t⇤C) ⇠ exp (�t⇤C/⌧c) with the average time ⌧c that depends on the epigenetic state (SAW:
⌧c = 1/1.6, OFF: ⌧c = 1/1.25). ⌧c is small for the SAW and it increases as we add inter-
actions to the system. However, interestingly, the probability of loop formation time (t⇤L)
has a power law decay (p(t⇤L) ⇠ (t⇤L)��). This suggests that there is a huge diversity in loop
formation times, and the average looping time alone may not be su�cient to describe the
loop formation phonomena. We find that the epigenetic states alter the slope of the distri-
bution (SAW: � = 0.4, OFF: � = 1.0) keeping the overall nature the same. Comparison of
these two distributions reveals that quantitatively the t⇤L is much larger than ⌧⇤c, indicating
that chromatin segments take longer to come into contact but stay in contact for a short
time.
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Figure 6.15: Distribution function for contact time (t⇤C) and loop formation time (t⇤L) for a specific

bead-pair (bead 5 and bead 30) in SAW and OFF state are shown in (a) and (b), respectively.
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6.6 Summary

Even though there is a great improvement in our understanding of static nature of chro-
matin organization, very little is known about the dynamics, which is a crucial aspect
of in vivo chromatin. Here, in this chapter, we investigated the fluctuations and dynam-
ics of chromatin domain. Going beyond the average properties, we computed the dis-
tance probability distribution and it shows two peaks – an interaction-driven peak and an
entropy-dominated peak. Assuming that interactions are arising from epigenetic states,
we show how perturbations in epigenetic states would alter p(r); the distance distribution
between a given bead pair depends on the interaction strength of all other pairs suggesting
the cooperative nature of chromatin folding. Volume and the shape properties of the chro-
matin domain depends on the epigenetic state. The OFF state is highly collapsed/compact,
more spherical compared to the extended, less spherical SAW. The relaxation time of the
domain is dependent on the epigenetic state of the domain. Counter-intuitively, the relax-
ation time of a highly crosslinked OFF state is much smaller than that of a crosslink-free
SAW polymer. We explain this phenomenon by computing e↵ective sti↵ness of the do-
main, from polymer fluctuations. We also show that the OFF state has a higher e↵ective
drag. We study dynamics accounting for crucial hydrodynamic interactions; we show
that HI has a significant influence on the relaxation time of the chromatin domain. With
HI, the domain takes half the time to relax as compared to the no-HI case. We compute
the loop formation time and the time for the looped bead pairs to remain in contact. We
show that average looping time has di↵erent scaling with genomic separation, depending
on the epigenetic nature of the chromatin states. The looping times show a power law
distribution indicating multiple timescales that might be involved with looping. On the
other hand, the contact time has an exponential distribution.

Apart from understanding of the spatiotemporal nature of chromatin domains, quanti-
ties calculated here have immense biological significance too. There is an ongoing debate
in the field about whether the gene regulation requires actual physical contact between
two regulatory segments or only the proximity would su�ce. Cellular processes such as
transport of proteins from one region to another (eg. enhancer-promoter), spreading of
histone modifications in the 3D space etc would crucially depend on p(r). For example,
given r, one can compute the time (⌧p) for proteins/enzymes to di↵use from location rµ to
r⌫. The mean time would depend on the distribution as h⌧pi =

R
⌧p p(r)dr. However, apart

from the distance among segments, the accessibility would depend on the local compact-
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ness and di↵usivity too. That is, compactness of the domain and e↵ective viscous drag
together with p(r) would be crucial for understanding how physics of chromatin would
a↵ect biological function. Given that phase separation is argued to be one of the important
factors determining the domain formation, our study also reveals how interplay between
epigenetic states and polymer dynamics would a↵ect loop formation and contact times.



Chapter 7

Conclusion

In this thesis, we set out to study the 3D organization and dynamics of chromatin. Recent
advances in experimental studies have generated a large amount of experimental data
giving us information about contact frequencies between chromatin segments (3C, 5C,
HiC etc.) as well as the spatial location of certain genes (microscopy). The chromatin
conformation capture experiments provide us partial information about the population-
averaged contacts counts between certain segments. Computation/theoretical studies can
complement these experiments, go beyond the contact counts and generate the complete
3D organization and study dynamics.

The main challenge to simulate the dynamics of chromatin is that we do not know the
interaction strength parameters among di↵erent chromatin segments. To overcome this
challenge, in this thesis, we have developed an inverse technique and obtained optimal
interaction strengths between all chromatin segments and used it to investigate the dy-
namics of a chromatin domain. We investigated the 3D organization of chromatin-based
on publicly available chromatin conformation capture experimental data.

In this thesis, we have presented a coarse-grained model for chromatin, considering it
as a bead-spring chain. We used the Fraenkel spring for the linear connectivity and a novel
SDK potential for excluded volume and intra-chromatin interaction. We combined the in-
verse method with the Brownian dynamics simulation to present an inverse Brownian
dynamics (IBD) method. Using IBD, we optimised the interaction strength parameters,
consistent with experimental contact count data. Our IBD algorithm has the following
advantages: i) unlike some of the existing models in the literature, we do not assume
any à priori relation between spatial distance and contact probability, ii) we optimize
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the interaction strength between the chromatin segments to reproduce the experimentally
known contact probability, and iii) our simulations have accounted for hydrodynamic in-
teractions; therefore, our model is capable of investigating the dynamics of the chromatin
polymer in detail.

To conclude, the contribution of the current work can be summarized as follows:

1. We introduced the Soddemann-Dunweg-Kremer (SDK) potential to model the ex-
cluded volume and intra-chromatin interactions. We investigated this in detail and
estimated the appropriate potential energy parameters such that we could reproduce
the universal scaling laws (Rg ⇠ N⌫) known in polymer physics.

2. We developed an Inverse Brownian Dynamics method to compute the optimal in-
teraction strengths between di↵erent segments of chromatin such that the experi-
mentally measured contact count probability constraints are satisfied.

3. We validated the IBD method for a prototype bead-spring chain. The IBD repro-
duced the contact probabilities and the interaction strengths (within 5% error), re-
flecting its reliability.

4. Applying this method to the ↵-globin gene locus in two di↵erent cell types, we
predicted the 3D organization corresponding to active and repressed states of the
locus. The structural properties of the ↵-globin gene locus were investigated in
terms of shape functions, bead number density distributions, and 3D snapshots.
In the ON state, the ↵-globin exists in an extended structure, whereas in the case
of the OFF state, the gene appears to be in a folded/collapsed state. This is also
consistent with the notion that in the ON state, the chromatin must be more open
for transcription factors to access the gene, whereas the structural status of the OFF
state should be more compact to prevent transcription factors from accessing the
gene.

5. A procedure for normalizing the contact count matrix was introduced with a pa-
rameter Nf varying from 0 to 1 that reflected the two di↵erent extreme scenarios
for estimating the sample size. We also simulated the ↵-globin gene with well-
known ICE normalization. We studied the di↵erences in structural features such as
shape properties, density profile, and 3D configuration between ICE and the other
normalization procedure.
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6. Our simulations could predict the average spatial distance (rµ⌫) between any two
segments. We have shown how the rµ⌫ varies as a function of contact probability(pµ⌫).
We found that, unlike the prevalent notion, there is no simple functional relation be-
tween rµ⌫ and pµ⌫. Given a pµ⌫ value, one cannot uniquely predict the mean spatial
distance as there is huge variability arising from heterogenous intra-chromatin in-
teractions.

7. We also computed the mean spatial distance (rµ⌫) as a function of genomic distance(s)
for alpha-globin in the OFF state and compared it with similar known experimental
observation. It is interesting to note that the slope as well as the spread of rµ⌫ vs s

relation is consistent with what is observed experimentally.

8. We computed the distance probability distribution, and it shows two peaks. The first
peak is determined by the interaction energy between the bead pair (interaction-
driven peak), and the second peak is dominated by polymer entropy (genomic sep-
aration).

9. We studied the chromatin dynamics accounting for crucial hydrodynamic interac-
tions; we showed that the HI has a significant influence on the relaxation time of the
chromatin domain. With HI, the domain takes half the time to relax as compared to
the no-HI case.

10. We investigated the role of epigenetic modification by altering the interaction strength
of the system.

11. We computed the loop formation time and the time for the looped bead pairs to
remain in contact. We have shown that the average looping time has a di↵erent
scaling with each epigenetic state. The looping times show a power-law distribution
indicating multiple timescales that might be involved with looping. Contrary to this,
the contact time has an exponential distribution.

12. We demonstrated the cooperative nature of chromatin folding by examining various
static and temporal quantities such as distance probability distribution and loop
formation time.

In a nutshell, taking chromatin conformation capture data as input and using a novel
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inverse Brownian dynamics method, we have investigated various crucial features of chro-
matin organization, its fluctuations and dynamics.

7.1 Suggestions for experiments to test our predictions

Most of the results in this work are predictions that may be tested in suitably designed ex-
periments. Since we take HiC-like data as input and predict average properties, positional
fluctuations and dynamics of chromatin segments, microscopy is the ideal method to test
our predictions [54, 18, 93]. We predict that the spatial segmental distance depends not
only on the contact probability but also on the segment length along the contour. One of
the ways to test our prediction is to perform 3D FISH on segment pairs having the same
contact probability but di↵erent segment lengths. The distance obtained from the FISH
experiment will validate the predictions made in this work. So far 3D FISH techniques
have measured distances [18, 129] above 100nm (sizes equivalent of ⇡ 3 beads in our
simulation). As you can see from Figures 5.6 - 5.12, our predicted 3D distances are of
the order of 100nm - 700nm (size of 3 beads to 20 beads, i.e. 3łH - 20łH). Therefore,
3D FISH techniques can measures distances in the same range as what we predict in our
simulations. Shape properties and density profiles of the ↵-globin locus are also pre-
dicted and can be tested using techniques like super-resolution microscopy and electron
microscopy. We require these additional experiments to determine the appropriate nor-
malization. Our work predicts that 3D distances, shape properties, density profile, etc.,
will depend on the precise nature of normalization. Hence, the appropriate normaliza-
tion methodology may be determined by comparing our results with future experiments
that measure these quantities. It will be very interesting to experimentally test how the
average 3D distance as a function of contact probability varies. Certain experiments that
probe structural features (e.g., electron microscopy) can also investigate the broad shape
properties. All p(r) predictions may be tested either via live (without fixing) microscopy
experiments or by collecting a large number of frozen snapshots of segment-locations via
FISH or equivalent methods. Imaging experiments may also estimate the volume occu-
pied by a domain. From the positional fluctuation data, one can also obtain the e↵ective
sti↵ness as described earlier in this paper. To measure the time-dependent quantities, apart
from live microscopy experiments, one may also design appropriate FRET pairs that can
probe quantities like the contact time [143]. Obtaining all of these quantities for di↵erent
epigenetic states would facilitate comparison with our predictions.
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7.2 Limitation of the study

We make an e↵ort to understand and explain the phenomena of chromatin folding by the
use of a polymer model. Considering a simple model undoubtedly expands our under-
standing of the complex system but su↵ers from certain limitations. The coarse-grained
polymer model lacks certain chemical details below the resolution of the monomer of the
model. For example, we do not have nucleosome level information considered here.

One of the concerns regarding our work could be that this study simulates only a short
segment. However, most of the biologically relevant processes happen on the length scale
of a gene (or a few genes). Hence, it is essential to zoom in and study the organiza-
tion and dynamics of short segments. Given that chromatin is organized into small local
domains (topologically associated/chromatin domains) having only local interactions pre-
dominantly, it may be reasonable to analyze one locus or domain at a time. The IBD algo-
rithm can also be used to study the static and dynamics properties of the whole genome by
considering a longer polymer chain. Several sampling techniques can be utilized to sam-
ple the phase space e�ciently, such as parallel tempering techniques (64). This method
can be used to check the validity of the simplest model for a given contact probability
matrix. In other words, if a model does not converge to the desired probabilities even
after proper sampling, it implies that the model (as represented by the Hamiltonian or
the included physics) may require modification and a more sophisticated model may be
required. For instance, we have chosen the simplest model that can reproduce the exper-
imentally observed contact probability map. A lack of convergence (even after proper
sampling) may imply the need for adding additional physics into the model. For example,
certain faraway contacts may require the addition of nonequilibrium processes like loop
extrusion.

Our simulation does not account for nonequilibrium activity explicitly. We neglect
the e↵ects of active processes like transcription and chromatin remodelling. However, the
kind of interactions that we consider in our model (✏µ⌫) are maintained via nonequilib-
rium activity. The e↵ect of activity is probably buried in ✏µ⌫ such that we get back the
experimentally seen contacts.

We have also not considered the loop extrusion explicitly. This may not a↵ect the
static properties since we have accounted for all intra-chromatin interactions. However,
the precise dynamics may depend on the amount of loop extrusion. While the loop ex-
trusion may be crucial for understanding chromatin compaction during metaphase [57],
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it is not clear precisely how extrusion works in the interphase. For example, given that
there are many intra-chromatin interactions, how the loop extruding factors would move
through these dense contacts is not clear. Moreover, there are large number of domains
where the loop extrusion may not be the dominating factor. Recent experiments have
shown that domains with transcription are less dynamic compared to the repressed do-
mains, opening up new questions on the role of extrusion like dynamics in the inter-
phase [54, 65, 6]. Since there are many unanswered questions on how to implement
loop extrusion, we restricted ourselves to studying the role of intra-chromatin interaction
energy and polymer entropy. In the current thesis, we have only accounted for intra-
chromatin interactions that are relevant for ↵-globin domain. However, for some do-
mains, there might be additional interactions with the nuclear periphery/nuclear lamina.
For example, some heterochromatin regions are known to be lamina-associated domains
(LADs). In future, when we will simulate such LADs, we will incorporate bead-lamina in-
teractions in an appropriate manner. In addition, for some domains, there would be inter-
chromosomal interactions. For example, in a recent work, it has been shown that chro-
matin intermingling regions are regulatory hotspots for transcription [12]. While studying
such domains in future, it will be crucial to incorporate relevant inter-chromosomal inter-
actions.

7.3 Future perspectives

Our model can be extended to incorporate more data (histone modification data, CHIP-
Seq data of certain proteins) and address chromatin organization on the length scale of
genes in more detail. Recent experiments suggest that 3D chromatin organization is driven
by two di↵erent dynamic processes, namely, phase separation and loop extrusion. Since
our model is capable of studying dynamics, the model may be extended to investigate
the interplay between di↵erent dynamic processes in determining chromatin organiza-
tion. This study can be further extended genomewide to examine various gene loci and
investigate the fluctuations and dynamics of all domains in the genome. Such polymer
models are useful for examining aspects like the spread of histone modifications and ac-
cessibility of the domains. Recent polymer studies have highlighted the role of crowding
under good/poor solvent conditions [136]. Our work may also be extended to incorporate
the e↵ect of crowding with the parameters relevant to the nucleus. With the capability
of analyzing the 3D configuration along with chromatin dynamics, IBD can complement
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experimental research and also provide deeper and more useful insights. We hope that
this study would catalyze new experimental and computational studies examining the in-
terplay between epigenetics and polymer dynamics.





Chapter 8

Research outcomes

8.1 Publications

1. K. Kumari, J. R. Prakash, R. Padinhateeri, Spatiotemporal organization of chro-

matin domains: role of interaction energy and polymer entropy (under review),
bioRxiv (2021), doi: 10.1101/2021.02.17.431616.

2. K. Kumari, B. Duenweg, R. Padinhateeri, J. R. Prakash, Computing 3D chromatin

configurations from contact probability maps by Inverse Brownian Dynamics,
Biophys J. 118: 2193-2208 (2020), doi: 10.1016/j.bpj.2020.02.017.

3. A. Santra, K. Kumari, R. Padinhateeri, B. Duenweg, J. R. Prakash, Universality of

the collapse transition of sticky polymers,
Soft Matter, 15, 7876-7887 (2019), doi: 10.1039/C9SM01361J.

8.2 Conferences

1. K. Kumari, J. R. Prakash, R. Padinhateeri, Computing the spatial organization

and dynamics of chromatin domains, Statistical Mechanics of Soft Matter. Orga-
nized jointly by the Gri�th University and the University of Queensland, Brisbane,
Australia (held virtually) 14-15 December, 2020 (Talk).

2. K. Kumari, J. R. Prakash, R. Padinhateeri, Computing the spatial organization

and dynamics of chromatin domains, Biophysics Paschim, CSIR-NCL, Pune, India
(held virtually) 3 October 2020 (Poster).
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3. K. Kumari, B. Duenweg, R. Padinhateeri, J. R. Prakash, Computing three dimen-

sional chromatin configurations from two dimensional contact probability maps:

An inverse Brownian dynamics algorithm, Diamond Jubilee Symposium held at IIT
Bombay, India from 15-16 February 2019 (Talk).

4. K. Kumari, B. Duenweg, R. Padinhateeri, J. R. Prakash, Computing three dimen-

sional chromatin configurations from two dimensional contact probability maps:

An inverse Brownian dynamics algorithm, EMBO Symposium: Regulatory epige-
nomics: From large data to useful models. Organized by IMSc Chennai, India from
10 – 13 March 2019 (Poster).

5. K. Kumari, B. Duenweg, R. Padinhateeri, J. R. Prakash,Computing three dimen-

sional chromatin configurations from two dimensional contact probability maps:

An inverse Brownian dynamics algorithm, International Union of Theoretical and
Applied Mechanics (IUTAM) held at IIT Kanpur, India from 17-20 December 2018
(Poster).

6. K. Kumari, B. Duenweg, R. Padinhateeri, J. R. Prakash, Computing three dimen-

sional chromatin configurations from two dimensional contact probability maps:

An inverse Brownian dynamics algorithm, 7th Meeting of the Asian Forum of Chro-
mosome and Chromatin Biology held at JNCASR, Bangalore, India from 15-17
November 2018 (Poster).

7. K. Kumari, B. Duenweg, R. Padinhateeri, J. R. Prakash, Computing three dimen-

sional chromatin configurations from two dimensional contact probability maps:

An inverse Brownian dynamics algorithm, Chemical Engineering Postgraduate As-
sociation (CEPA) conference held at Monash University, Australia on 26 October
2017. (Talk)
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Appendix A

A.1 Non-dimensionalization techniques

In this section, we will compare two di↵erent schemes of non-dimensionalization and
show that the simulation results are una↵ected by the non-dimensional scheme. Through-
out the thesis, we used the non-dimensional scheme inspired from the Bird et al. [21].
Here in this section, we compare this scheme with another scheme (inspired by Netz
[89]) and establish the consistent results, from both the simulations.

The Fokker-Planck equation

The Fokker-Planck equation for the density distribution function ( ) of a single bead
under the force F can be written as

@ 

@t
= �

1
⇣

@

@r
F +

kBT
⇣

@2 

@r2 (A.1)

where ⇣ = 6⇡⌘a is the Stokes friction coe�cient of a spherical bead, ⌘ is the solvent
viscosity, and a is the bead radius. kB is the Boltzmann constant, T is temperature, r is the
bead position and t is the time.

Bird’s non-dimensional FP equation

In this section, we will use the Bird’s non-dimension formulation. All lengths are
made dimensionless by using the characteristic length scale lH =

p
kBT/H. Here, H is

coe�cient of the harmonic force (F). Characteristic time scale �H = ⇣/4H is used to
make time dimensionless. Non-dimensional quantities (indicated with an asterisk “ ⇤ ”)
can be written as

r⇤ =
r
lH

; F⇤ =
F

p
kBT H

;  ⇤ =  l3
H; t⇤ =

t
�H

; (A.2)
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Using the above dimensionless parameters, the FP equation in Eq. 1 can be written as
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Further simplifying the terms in brackets by substituting the value of lH =
p

kBT/H
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Now, substituting the value of �H = ⇣/4H
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The Stochastic Di↵erential Equation (SDE) from FP in the form
@ 

@t
= �

@

@r
(A ) +

1
2
@2

@r2 (D ) (A.10)

using Ito’s formulation is

dr = A dt + B dW (A.11)

where D = B.BT .

Following the Ito’s formulation, the equivalent SDE for FP in Eq. A.9 is

dr⇤ =
1
4

F⇤dt⇤ +
1
p

2
dW⇤ (A.12)

r⇤(t⇤ + dt⇤) = r⇤(t⇤) +
1
4

F⇤dt⇤ +
1
p

2
dW⇤ (A.13)

time in dimension can be written as

t = t⇤�H (A.14)

t = t⇤
⇣

4H
(A.15)
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Another non-dimensionalization scheme

All the length scale are made dimensionless by the monomer radius a and the time
scales by the time step dt. Dimensionless quantities (indicated by “ˆ”) can then be written
as

r̂ =
r
a

; F̂ =
F

kBT/a
;  ̂ =  a3; t̂ =

t
@t

; @̂t =
@t
@t
= 1 (A.16)

Eq. 1 can be written as
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where
1
⇣̂
=

kBT@t
a2⇣

(A.20)

The dimensionless friction coe�cient 1
⇣̂

is the only parameter in the simulation. Please
note that the @t can be obtained from the above equation.

Following the Itô formulation, the equivalent SDE for FP in Eq. A.19 is

dr̂ =
1
⇣̂

F̂@t̂ +

s
2
⇣̂

dŴ (A.21)

where Ŵ is the Wiener process. Now, substituting dr̂ = r̂(t̂ + 1)� r̂(t̂), the above equation
becomes

r̂(t̂ + 1) = r̂(t̂) +
1
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F̂@t̂ +

s
2
⇣̂

dŴ (A.22)

Substituting the value of @t from Eq. A.20 in Eq. 16, we can write the time in dimension
(t) as

t =
t̂⇣a2

kBT ⇣̂
(A.23)
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Comparing both the non-dimensional equations

For the comparison purpose, we can write the SDE given in Eq. A.21 as
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2
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Note that the dr in LHS is in dimensional units. Similarly, the SDE given in Eq. A.12 can
be written as
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1
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2
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The LHS of Eq. A.25 and A.27 are the same. Hence, the di↵usion and the drift terms
should be the same. Comparing the di↵usion term Eq. A.25 and A.27, we get
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Figure A.1: Depiction of the calculation of 2D distance between bead 5 and bead 40 from simu-

lation.

Above equation is the relation between the ⇣̂ and dt⇤. For simplicity, we consider lH = a.
Hence,

(A.36)
1
⇣̂
=

1
4

dt⇤ (A.37)

This indicates that the 1
4dt⇤ in Bird’s non-dimensional scheme is similar to 1

⇣̂
in the

other non-dimensional scheme. This establishes the fact the simulation results when con-
verted to dimensional form are independent of the non-dimensional scheme used.

A.2 Conversion of non-dimensional length and time to
standard units

In our simulations, all quantities are computed in dimensionless units as described earlier.
To convert these dimensionless numbers to standard units having appropriate dimensions,
we need to determine a lengthscale and a timescale. By comparing our simulations with
appropriate experimental observations, we deduce values of characteristic length and time
scales that can be used for the unit conversion as follows:
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Length scale: Even though the 3D distances between the genomic segments of ↵�globin
are not available, the 2D distance between the two probes located at 34, 512 - 77, 058 bp
and 386, 139 - 425, 502 bp for GM12878 (OFF state) was found to be 318.8 ± 17.0 nm
from the 2D FISH [10]. We computed the average 2D distance (= 8.81) between the
corresponding bead pair (bead 5 and bead 40) from our simulation by averaging it over all
the three 2D planes (xy, yz, zx) as depicted in Fig. A.1. By comparing 2D distance values
obtained from simulation and experiment, we estimate the characteristic lengthscale in
our simulation as lH = 318.8/8.81 ⇡ 36nm. We use this value of lH to convert all non-
dimensional lengths to standard units.
Time scale: The timescale in our simulation is given by:

�H =
⇣

4H
=

6⇡⌘sa3

4kBT
(A.38)

where H is the spring constant, T is the absolute temperature, kB is the Boltzmann con-
stant, and ⇣ = 6⇡⌘sa is the Stokes friction coe�cient of a spherical bead of radius a where
⌘s is the solvent viscosity. For our problem a = h⇤lH

p
⇡ ⇡ 16nm. However, we do not

know the precise viscosity of the solvent in the nucleus. There are many estimates ranging
over several orders of magnitude from 10�3 Pa.s to 103 Pa.s. [43, 25]. Given this degree
of variability, we decided to use a simple method to estimate time, based on recent exper-
imental reports of chromatin dynamics. Chromatin segments under microscope seems to
“di↵use” around in a region having the size of the order of ⇡ 0.1(µm)2 within a timescale
of ⇡ 50 seconds [54]. This leads to a di↵usion coe�cient (D) of the order of 500 nm2/s,
and a timescale

�H =
a2

4D
=

(16 nm)2

4 ⇥ 500 nm2/s
= 0.12 s (A.39)

Since the calculation is to estimate the order of magnitude number, throughout this work,
we use �H = 0.1 s. Interestingly, this also corresponds to an e↵ective viscosity roughly in
the middle of the wide range estimated previously.

A.3 Distance probability distributions

The analytical expression given by des Cloizeaux [32] for the distance probability distri-
bution for a self-avoiding walk (SAW) polymer is

p(r⇤) = C[r⇤]✓+2e�[Kr⇤]
1

1�⌫ (A.40)
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Here ⌫ is the Flory exponent, ✓ is a geometrical exponent and the coe�cients C and K are
given by

K2 =
� ([✓ + d + 2][1 � ⌫])
� ([✓ + d][1 � ⌫])

C = 4⇡
[� ([✓ + d + 2][1 � ⌫])] ✓+d

2

[� ([✓ + d][1 � ⌫])] ✓+d+2
2

where d is the dimension. Since our simulations are in 3D, d = 3. The geometrical
exponent ✓ takes di↵erent values in the following three cases

1. Case 1: When both beads are the end beads of the polymer (✓ = ✓0),

2. Case 2: When one of the beads is at the end and the other bead is an intermediate
bead within the chain (✓ = ✓1),

3. Case 3: When both the beads are intermediate beads (✓ = ✓2)

As the coe�cients C and K depend on ✓, they take di↵erent values in each of the above
cases. Following the findings of des Cloizeaux [32], Witten and Prentis [141], Du-
plantier [40] and Hsu et al. [64], one can determine that ✓0 = 0.267, ✓1 = 0.461 and
✓2 = 0.814 [114]. Simulating a SAW polymer, we compared the probability distribution
for all the three cases with the corresponding analytical expressions using the appropri-
ate values of ✓. Fig. A.2 show the validation for case 1 and 2, while the validation for
case 3 has been shown in the main text. As can be seen, the simulations are in excel-
lent agreement with the analytical expression. To the best of our knowledge, this is the
first comparison of exact numerical results with the analytical expression proposed by des
Cloizeaux.

We studied the distance probability distributions of various bead-pairs revealing a
distribution with two peaks where one of the peaks is dominated by entropy of the poly-
mer (genomic separation). The other peak emerges with an increase in the interaction
strength. Fig. 6.4(a) depicts the Cumulative distance distribution C(r⇤) for various bead-
pairs at same genomic separation (si j = 25) experiencing di↵erent interaction strengths.
Di↵erences in these plot can be easily noticed only at the small ri j while they looks similar
overall (see inset). The same has been depicted for a specific bead-pair (5, 30) in di↵erent
epigenetic states in Fig. 6.4(b). The di↵erence in this case is not only observable for small
ri j, but for the whole regime of ri j as can be seen in the inset.
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Figure A.2: Comparison of distance probability distributions obtained from the simulation of a

SAW chain with the analytical expression for case 1 - where both beads are end beads, and case 2

- where one bead is at the chain end and the other bead is an intermediate bead.

A.4 Temporal quantities from equivalent 1D
simulation

The phase-space exploration of a specific bead-pair in a bead-spring chain can be imag-
ined as a single bead moving in an e↵ective potential energy landscape given by the free
energy F⇤(r⇤) = � ln (p(r⇤)/4⇡r⇤2) as a function of the 3D distance (r⇤) between the cor-
responding beads in the pair of beads. In this section, we will present the dynamics of a
single bead in this free energy landscape.

However, before studying the problem in a new free energy landscape, we reproduced
known standard results for single particle dynamics in the following three cases

Wiener process

For a Wiener process, the probability distribution function obeys the Fokker-Planck
equation:

@ 

@t
=

1
2
@2 

@x2 (A.41)
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Figure A.3: The mean first exit time as a function of time step of the simulation for the Wiener

process.

This describes a randomly di↵using particle along the spatial coordinate x as a function
of time t. We simulated the corresponding stochastic di↵erential equation and calculated
the first exit time (te) for the Wiener process. te is defined as the time it takes for the
position of the particle x to exit a region I for the first time, starting for a fixed position
x = x0 at time t = 0. The mean first exit time htei was computed for an ensemble
of trajectories. We performed Brownian dynamics for five di↵erent time steps (�t =

0.0005, 0.001, 0.005, 0.01, 0.05) and generated 106 trajectories to calculate the htei for the
interval [0, 1] . We compared our results with the simulation results of Dünweg and Paul
[39]. We also compared the extrapolated result to the �t = 0 with the exact solution of
Dünweg and Paul [39]. Fig. A.3 shows the agreement of our simulation results with the
exact and simulation results of Dünweg and Paul [39].

Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process can be described using the equation

@ 

@t
=

 
@

@x
x +

1
2
@2

@x2

!
 (A.42)

Similar to the Wiener process, we simulated the Ornstein-Uhlenbeck process too using
Brownian dynamics for five di↵erent time steps (�t = 0.0005, 0.001, 0.005, 0.01, 0.05)
and generated 106 trajectories to calculate the average quantities. Here too the first exit
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Figure A.4: The mean first exit time as a function of time step of the simulation for the Ornstein-

Uhlenbeck process.

time htei is calculated to exit from the interval [�1, 1] (on either side), starting from x = 0.
Fig. A.4 shows the comparison of our simulation and extrapolated value at �t = 0 with
the simulation and exact solution of Dünweg and Paul [39].

Ginzburg-Landau process
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@t
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@

@x
(x3
� x) + D

@2
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!
 (A.43)

In the Ginzburg-Landau case, the particle is moving in double-well potential given by

U =
1
4

x4
�

1
2

x2 (A.44)

See Fig. A.5(a) for the plot of the potential. te is defined as the escape time from one of the
symmetric minima (x = ±1) over the barrier at x = 0. Fig. A.5(b) shows the comparison
of our simulation and extrapolated value at �t = 0 with the simulation and exact solution
of Dünweg and Paul [39].

As we are computing the escape time of a particle from the double-well potential,
the escape time can also be compared with the Kramers’ rate theory [72, 60, 122]. The
Kramers’ rate of escape (t�1

e ) is given by

k =
 
!0 !1

2⇡⇣

!
e��U/KBT . (A.45)
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Figure A.5: (a) The double-well potential used in the Ginzburg-Landau process. (b) The mean

first exit time as a function of time step of the simulation for the Ginzburg-Landau process. The

analytical value from Kramer’s first passage time theory is also indicated here.
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Here, !2
0 =

������
@2U
@x2

������
x=0

and !2
1 =

������
@2U
@x2

������
x=1

are the magnitudes of curvature values of the

potential evaluated at the barrier crossing point (x = 0) and at the minima (x = 1),
respectively. �U = |U(x = 1)�U(x = 0)| is the height of the barrier. Evaluating Eq. A.45
using the Ginzburg-Landau potential given in Eg. A.44, we get
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k = 0.043
1
�H

(A.51)

Hence the escape time is

te = k�1 = 23.25�H (A.52)

The value from Kramers’ analytical formulae is indicated by the blue dashed line in
Fig. A.5(b). It can be easily seen from the Fig. A.5(b) that there is a di↵erence between
the first passage time and the Kramers’ solution. It is expected that this di↵erence will
become negligible when �U � KBT .

In all the above cases, it can be observed that the simulation results are dependent on
the time step used in the simulation. Therefore, to estimate the exact value (independent
of the time step), one needs to extrapolate the simulation results to the zero time step limit
(�t ! 0).
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Figure A.6: (a) E↵ective potential energy landscape for the bead calculated as F⇤(r⇤) =

� ln (p(r⇤)/4⇡r⇤2). (b) Time step extrapolation result for the first passage time of a single bead

under the e↵ective potential landscape given by the free energy. Di↵erent colour indicated di↵er-

ent destination position.
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Figure A.7: (a) Time to reach di↵erent positions starting at x⇤ = 15. Di↵erent curves are for

di↵erent epigenetic states. (b) Comparison of the first passage time result from full blown 3D

polymer simulation with the equivalent case of a single particle simulation in the e↵ective 1D free

energy landscape.
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After validation of single bead behaviour in three di↵erent potentials, we simulated
the bead in the e↵ective potential energy landscape given by the free energy of a spe-
cific bead-pair (bead 5 and 30) U = F⇤(r⇤) = � ln (p(r⇤)/4⇡r⇤2), where r⇤ = r⇤5 � r⇤30 .
Fig. A.6(a) shows the potential energy landscape for all the four epigenetic states namely;
OFF, OFF:GT1, OFF:GT2 and SAW state. We took the cubic spline through the data
points to generate a smooth free energy landscape for simulation. Starting from x = 15,
we computed the exit time for the bead to cross various positions such as x = 5, 3, 1.8.
This was done for various time steps and the results for the OFF state are plotted in
Fig. A.6(b). We then extrapolated the simulation results to �t ! 0 to estimate the exact
values. Solid line in Fig. A.6(b) indicates fitting to the simulation data and the y-intercept
of solid lines represents the extrapolated value for �t = 0.

We repeated this study for various epigenetic states and simulated the bead in the cor-
responding free energy landscape for OFF:GT1, OFF:GT2 and SAW states. Fig. A.7(a)
shows the extrapolated exit time (time at �t ! 0). It can be observed that, starting from
x = 15, it takes more time to reach the farther distance, from the starting position. For
example, in the SAW (black curve in Fig. A.7(a)), bead reaches the position x = 5 quickly
compared to the position x = 1.82, which is far from the starting point x = 15. In the epi-
genetic context, OFF state takes the smallest time to reach as compared to the other states
and SAW. This is because, in the OFF state, chromatin interactions have tilted the free
energy landscape (see Fig. A.6(a)) to facilitate the contact between di↵erent segments.

Finally, we compared the results obtained from simulating a single bead in the ef-
fective landscape (1D) to the simulation of the 50 bead polymer chain (3D). Fig. A.6(b)
shows this comparison for the OFF state. It was observed that the first passage time in the
polymer is higher compared to the results obtained in the 1D single bead case. It should
be noted here that the results presented in this section are only preliminary, and a much
deeper understanding and simulations are required to map the 3D polymer simulation
result in simple single bead simulation.
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